
CPS506 – Comparative Programming Languages – Current Questions

– All current questions as of April 12, 2022

Purpose The purpose of this document is to assist students in preparing for tests and exams.
It includes all questions previously used in the course. Many of the questions on this year’s evaluations

will come from this list (possibly with some modifications).

CPS506 1 Current Questions

How to use The goal of the evaluations is not memorization, but rather understanding. If you have
attended lectures, done the labs and assignments, and are prepared to think, rather than regurgitate, you
will very likely do well on the evaluation.

The questions below are provided so that you may verify your understanding of the various concepts and
languages, and where necessary refresh/fill-in your nowledge. Answers are not provided, because this should
not be an exercise in memorization and regurgitation. As you review, you have a computer available to you,
so all the answers are available to you.

For each question, you should evaluate what you believe to be a correct answer, and then use the computer
to verify. The questions fall into 3 categories:

1. Programming questions. For this I encourage you to first program a solution on paper - emulating the
test environment - and then enter and debug it on the computer to verify it.

2. Tracing questions. Work through the code associated with several questions and write down your
answers to the questions. Only then, evaluate the provided code to verify your answers. Simply
evaluating the code and memorizing the answers will not help you nearly as much!

3. Theory questions. Answer the questions, then review your notes or the provided slides to verify the
answer.

If a question says “Not applicable” it means we did not cover the material in sufficient detail to make
the question reasonable to include on the evaluation. See the allQuestions file which includes everything.

If you find a question ambiguous, please let the professor know, so it can be made clearer.

ast-mc

The abstract syntax tree for an expression is shown
to the right. Select the correct concrete syntax for
this tree in each of the following expression syntaxes,
using no more parentheses than required.
Q1. prefix
Q2. postfix
Q3. Java
Q4. APL
Q5. Smalltalk

CPS506 2 Current Questions

ast
Q6. (4 marks) The abstract syntax tree for an expression is shown to the right. Show the
concrete syntax for this tree in each of the following expression syntaxes, using no more
parentheses than required.

Prefix: Postfix: Infix, Java precedence rules: infix, left-to-right precedence:

CPS506 3 Current Questions

ast2
Q7. (4 marks) The abstract syntax tree for an expression is shown to the right. Show the
concrete syntax for this tree in each of the following expression syntaxes, using no more
parentheses than required.

Prefix: Postfix: Infix, Java precedence rules: infix, left-to-right precedence:

CPS506 4 Current Questions

ast3
Q8. (4 marks) The abstract syntax tree for an expression is shown to the right. Show the
concrete syntax for this tree in each of the following expression syntaxes, using no more
parentheses than required. Where required, use “negated” for unary negation.

Prefix: Postfix: Infix, Java precedence rules: infix, Smalltalk precedence:

ast4
Q9. (4 marks) For the following expressions, show the abstract syntax tree.

Prefix:
(/ (- (+ a b) (* c d (- e)) (+ f g)) h)

Postfix: (is unary minus)
a b + c d + * e f + * g h - *

Infix , Java precedence rules:
- (a * b + c * (d - (e * f + (g * h))))

Infix, left-to-right precedence rules:
- (a * b + c * (d - (e * f + (g * h))))

CPS506 5 Current Questions

categories
Languages can be in several categories, including: OO (Object-Oriented), Imperative, Func-
tional, Parallel, and Declarative. Langauges can also have statements or everything can be an
expression. Languages can be statically type, dynamically typed, or untyped Finally, languages
can have properties such as functions, methods, reflection, and closures.

In each of the following questions choose the single best answer. There may be more than
one correct answer, and there may be answers that will give part marks. If the same question
is asked twice, there are at least 2 correct answers and you must answer a different property

for the two questions.

Q10. Smalltalk is
Q11. Smalltalk has
Q12. Smalltalk has
Q13. Elixir is
Q14. Elixir has
Q15. Elixir has
Q16. Haskell is
Q17. Haskell has
Q18. Haskell has
Q19. Rust is
Q20. Rust has
Q21. Rust has

elixir-concat
Q22. (3 marks) Extend the following code, to define the function myConcat which takes two lists
and returns the first concatenated to the front of the second. E.g. myConcat([1,2,3,4],[20,21,22])
produces [1, 2, 3, 4, 20, 21, 22]

Write the full recursive function. I.e. DO NOT use ++ or Enum.concat.

defmodule Test do
de f myConcat (

elixir-deal
Q23. (5 marks) Extend the following Elixir code, to define the function deal that takes a list
and deals it in order to 4 lists which will be returned in a tuple. For example if called with
the list [1,2,3,4,5,6] it would return the lists [1,5], [2,6], [3], and [4].

defmodule Deal do
de f dea l (

elixir-lazy
Q24. (2 marks) Discuss the value of eager and lazy evaluation in the context of Haskell (think
monads). Discuss the value of eager and lazy evaluation in the context of Elixir (think Enum,
Stream).

CPS506 6 Current Questions

elixir-match
Q25. (3 marks) Extend the following code, to define the function listCounts which takes a list
and returns the list of element counts. Elements of the list can be 2-tuples, 3-tuples, or flat lists,
and the element count is the sume of the values in the element. E.g. listCounts([{1, 2}, {3, 4, 5}, [1, 2, 3], [5, 6]])

would produce the list [3,12,6,11].

defmodule Test do
de f l i s tCoun t s (

elixir-moveLeft
Q26. (4 marks) Extend the following code, to define the function canMoveLeft which takes a
Tetris piece and returns true if the piece could move left. The only consideration is whether
the piece would fall off the left side of the board (the board has columns 1..n). Also define the
function moveLeft that returns the same piece or the piece moved left one step if that’s legal
(using the canMoveLeft function.

A piece is a tuple composed of: the atom piece, a pair for the centre point, a list of pairs
for the individual cells as offsets from the centre, and a colour.

defmodule Te t r i s do
de f canMoveLeft (

elixir-objects
Q27. (5 marks) In Elixir objects can be emulated by processes, where the object loops
receiving messages and replying to them. For example:

p1=Pawn . new () ,
Obj . c a l l (p1 , { : goto , 1 , 2}) ,
1=Obj . c a l l (p1 , : x) ,
2=Obj . c a l l (p1 , : y) ,
Obj . c a l l (p1 , { : moveDelta , 3 , 1}) ,
4=Obj . c a l l (p1 , : x) ,
3=Obj . c a l l (p1 , : y) .

Add the necessary code to the following to support the API used above for the object pawn:

defmodule Obj do
de f c a l l (obj , msg) do

send obj ,{ s e l f () ,msg}
r e c e i v e do

Response −> Response
end

end
end
defmodule Pawn do

def new () , do : spawn (MODULE , : i n i t , []) .

de f i n i t () do

CPS506 7 Current Questions

elixir-output
In the following code,

defmodule Output do
defp abc (x) do

cond do
x > 0 −> 1
x < 0 −> −1
true −> 0

end
end
defp fgh (x , y) , do : x ∗ y
defp n(x , x) , do : []
defp n(x , y) , do : [y | n(x , y+1)]
defp n(x) , do : n(x,−x)
de f ghi () do

f o r x<−1..4 , y<−n (4) , y<3, x>1, do : x+y
end
def h i j () do

ghi () |>
Enum. take (7) |>
Enum.map(fn x −> fgh (abc (x) , x) end)

end
end
[x1 , x2 , x3 | x4]=Output . gh i ()
[y1 , y2 , y3 | y4]=Output . h i j ()

Q28. What is x1?

Q29. What is x2?

Q30. What is length(x4)?

Q31. What is y1?

Q32. What is y2?

Q33. What is length(y4)?

Q34. What language is this?

elixir-output2
In the following code,

defmodule Output2 do
def abc (x) do

y = spawn l ink (MODULE , : n , [s e l f ()])
send y , x
r e c e i v e do

z −> z
end

end
def n(z) do

r e c e i v e do
v −> send z , n(v∗v , v)

end
end

CPS506 8 Current Questions

defp n(x , x) , do : [x]
defp n(x , y) , do : [y | n(x , y+y)]

end
[x1 , y1 | z1]=Output2 . abc (2)
[x2 , y2 | z2]=Output2 . abc (16)

Q35. What is x1?

Q36. What is y1?

Q37. What is length(z1)?

Q38. What is x2?

Q39. What is y2?

Q40. What is length(z2)?

Q41. What language is this?

elixir-output3
In the following code,

defmodule Output3 do
def abc (x) , do : n(x)
defp n(v) , do : n(v∗v , v)
defp n(x , x) , do : [x]
defp n(x , y) , do : [y | n(x , y+y)]

end
[x1 , y1 | z1]=Output3 . abc (2)
[x2 , y2 | z2]=Output3 . abc (16)

Q42. What is x1?

Q43. What is y1?

Q44. What is length(z1)?

Q45. What is x2?

Q46. What is y2?

Q47. What is length(z2)?

Q48. What language is this?

elixir-server
Q49. (4 marks) Extend the following code, defining the loop function so that the process
receives a pair of values and replies with the difference between them and the sum of them to
the originating process.

defmodule E l i x i r S e r v e r do
de f new () , do : spawn (loop)
de f i n i t () do

x = new ()
send x ,{ s e l f () , 4 , 2}
{2 ,6}= rec e i v e do x −> x end
send x ,{ s e l f () , 5 , 5}
{0 ,10}= rec e i v e do x −> x end

end
def loop () do

CPS506 9 Current Questions

elixir-simpleExpression
Q50. (5 marks) For the following expressions in Elixir, what is the result? (could be a number,
string, list, or error) (assume that the Enum module is loaded)

hd [3,4,5] :

tl [3] :

any?(&(&1<2),[0,1,2,3]) :

all?([0,1,2,3],&(&1<2)) :

reduce([1,2,3],6,&(&1+&2)) :

1/2 :

hd [1,1*2,1/(2-2),3+7] :

:x=="x" :

true==:true :

3<3==false :

[1,2,3]|>filter(&(&1)) :

extensibility
Q51. (8 marks)

Explain the primary form(s) of extensibility for each of the following languages:

Smalltalk: Elixir: Haskell: Rust:

fold
Q52. (12 marks)

For each of the languages we studied, write a function called fold that takes a function f,
and initial value it and a list l and returns the result that is produced by applying the function
to the initial value and the first element of the list, then to that result and the second element
of the list, and so on. For example, the code (in some made-up Javascript-like language):

function add(a1,a2) {return a1+a2*a2;}

fold(add,5,[2,3,4])

would produce the value: 34. If the language doesn’t have lists, use arrays.

Smalltalk: Elixir: Haskell: Rust:

CPS506 10 Current Questions

haskell-func1
Q53. (3 marks) Write the simplest Haskell function that has the following type signature:

p a i r L i s t : : (a −> b) −> (b −> c) −> [a] −> [(b , c)]

haskell-func2
Q54. (5 marks) Given the following Haskell definition, define the instance of Eq that has the
natural semantics with the addition that A is equal to C 0 and D [], and B is equal to C 1.
Remember that equality is symmetric (i.e. x == y ⇐⇒ y == x).

data Abc = A | B | C Integer | D [Abc]
i n s t ance Eq Abc where

A == A = True

haskell-monad
Q55. (1 marks) What is a monad?

haskell-monad2
Q56. (2 marks) Why doesn’t a language like Java have monads?

haskell-output
In the following code,

l e t x = head (drop 3 [(x , y) | x <− [1 . .] , y <− [3 . . 4]])
l e t y0 : z0 = drop 4 [(x , y) | x <− [1 . .] , y <− [3 . . 4]]
l e t y1 : z1 = drop 4 [(x , y) | y <− [1 . . 4] , x <− [1 . . 3]]
l e t (y2 ,) : z2 = (take 2 (drop 4 [(x , y) | x <− [1 . . 3] , y <− [1 . . 4]]))
l e t (y3 ,) : z3 = (take 2 (drop 4 [(x , y) | x <− [1 . . 3] , y <− [1 . . 4] , x<y]))

Q57. What is x?

Q58. What is y0?

Q59. What is length z0?

Q60. What is y1?

Q61. What is length z1?

Q62. What is y2?

Q63. What is z2?

Q64. What is y3?

Q65. What is z3?

Q66. What language is this?

CPS506 11 Current Questions

haskell-output2
In the following code,

l e t d x = x+x : : Int
l e t f x = x : f (d x)
l e t x0 : x1 : x2 = f 3
l e t y0 : = x2
l e t g x y = (x , y x) : g (y (y x)) y
l e t z0 : z1 : z2 = take 7 (g 3 (+2))

Q67. What is x0?
Q68. What is x1?
Q69. What is length x2?
Q70. What is y0?
Q71. What is z0?
Q72. What is z1?
Q73. What is length z2?
Q74. What language is this?
Q75. What is the type of f?
Q76. What is the type of g?

haskell-types
Q77. (5 marks) What is type inference, and why would you want it in a language? Use type
inference to determine the type signature of:

abc f g w = f w g

ghi f g = map (\y -> y g) f

jkl f g w = w (map g f)

haskell-typesmc
For each of the definitions below, what is the type of z?

Q78.
let z =
\x -> x

Q79.
let z =
\x -> x:[]

Q80.
let z x =
[x]

Q81.
let z x y =
x:y

Q82.
let z y x =
x:y

Q83.
let z x y =
[x y]

CPS506 12 Current Questions

lang-mc
In each of the following questions choose the single best answer. There may be more than one
correct answer, and there may be answers that will give part marks. If the same question is
asked twice, there are at least 2 correct answers and you must answer a different language for
the two questions.

Which language . . .

Q84. allows unrestricted mutation?
Q85. can generate native code?
Q86. can generate native code?
Q87. doesn’t have garbage collection?
Q88. doesn’t have list comprehensions?
Q89. doesn’t have list comprehensions?
Q90. dynamic dispatch for polymorphic ops?
Q91. generates code for polymorphic ops?
Q92. has control structures as statements?
Q93. has syntactic features to support DSLs?
Q94. has type classes?
Q95. has traits?
Q96. has traits?
Q97. is built on a process model?
Q98. is designed to support multiple cores?
Q99. is pure OO?
Q100. has pure functional functions?
Q101. is pure functional?
Q102. is statically typed?
Q103. is statically typed?
Q104. recognizes tail recursion?
Q105. recognizes tail recursion?
Q106. runs only on JVM/CLR?
Q107. simulates multiple-inheritance for code?
Q108. uses lazy evaluation?
Q109. uses monads for mutation?
Q110. uses prefix expression?
Q111. uses type inference?
Q112. uses type inference?

lang-preferred
Q113. (4 marks) Write a short essay (in the space provided) explaining which of the languages
we studied – Smalltalk, Elixir, Haskell, and Rust – is your favourite and give comparisons
with the others and with Java and C. There is no “right” answer; marks will be assigned for
the quality of the reasoning and the understanding of the trade-offs.

map2
Q114. (12 marks)

For each of the languages we studied, write a function called map2 that takes a function f

and 2 lists l1 and l2 and returns the list that is produced by applying the function to one

CPS506 13 Current Questions

element from each of the lists in turn. For example, the code (in some made-up Javascript-like
language):

function add(a1,a2) {return a1+a2;}

map2(add,[1,2,3],[4,5,6])

would produce the list: [5,7,9]. If the language doesn’t have lists, use arrays.

Smalltalk: Elixir: Haskell: Rust:

multi-func1
Q115. (8 marks) Write the simplest function that has the following type signature (or equiv-
alent) and works for all sizes of list:

pairList :: (a -> b) -> (b -> c) -> [a] -> [(b,c)]

In Smalltalk: In Elixir: In Haskell: In Rust:

multiprocessing
Q116. (6 marks) Not applicable

open-classes
Q117. (3 marks) Smalltalk is a “pure object-oriented” language. What is meant by this term?
In pure OO languages, you often want to add methods to standard types, including Object.
Why?

parallelism
Q118. (4 marks) One of the dominant issues of the next few years will be the end of faster
processors and the rise of multiple cores. Expain the problem this presents at the proces-
sor/language level. Describe various approaches programming languages might adopt to
address the problem.

rank-extensibility
Q119. (4 marks) Rank the languages we studied, with respect to extensibility.

Smalltalk Elixir Haskell Rust

Justify that ranking (note that “It’s more like what I’m used to” is not a justification).

rank-orthogonality
Q120. (4 marks) Rank the languages we studied, with respect to orthogonality.

Smalltalk Elixir Haskell Rust

Justify that ranking (note that “It’s more like what I’m used to” is not a justification).

CPS506 14 Current Questions

rank-simplicity
Q121. (4 marks) Rank the languages we studied, with respect to simplicity.

Smalltalk Elixir Haskell Rust

Justify that ranking (note that “It’s more like what I’m used to” is not a justification).

rust-dice
Q122. (5 marks) Given the following struct definition in Rust, define a minimal implemen-
tation with a function called new that takes 1 parameter - a Vec of unsigned dice rolls - and
returns a new object, and a method called next that, each time it is called with no parameters,
it returns a usize value for the next dice roll for the object, wrapping around as necessary. For
example, if created with 1,2,3,2 it would produce the sequence 1,2,3,2,1,2,3,2,1,2,3,2,1,2,3,2,...

s t r u c t Dice {
r o l l s : Vec<u8>,
r o l l : u s i ze ,

}
impl Dice {

rust-output
In the following code,

l e t s = " Hello ␣ World ! " ;
l e t mut r = Str ing : : from (s) ;
r . push s t r (" ␣ from ␣ me ") ;
l e t mut p = (&r) . s p l i t wh i t e s p a c e () ;
l e t q = p . next () . expect (" no ␣ keyword ") ;
l e t o = p . c o l l e c t : :<Vec< >>();
l e t mut x : Vec< > = (3 . . 6) . c o l l e c t () ;
// x . push (−5);
l e t z = x . remove (1) ;
l e t s = z+x . l en () ;
l e t w : Vec< >= x . i t e r () .map (| x | (∗x , s)) . c o l l e c t () ;
l e t (p , q)=w [0] ;

what do the following expressions evaluate to if printed or what type are they? (It may
help you to know that the commented line would cause an error).
Q123. type of s
Q124. type of x
Q125. type of q
Q126. w.len()

Q127. o.len()

Q128. x

Q129. What language is this?

rust-safety
Q130. (5 marks) Compare and contrast Rust and C, explaining C issues that are addressed by
Rust. Explain how Rust handles moving, borrowing, and copying to fulfil its safety promise.

CPS506 15 Current Questions

semantic
Q131. (6 marks) Explain the difference between syntax, semantics, and pragmatics in pro-
gramming languages. Is it possible to have 2 languages with different syntax, but the same
semantics? If not, explain why not; if so, explain and give an example of two such languages.
Is it possible to have 2 languages with different semantics, but the same syntax? If not, explain
why not; if so, explain and give an example of two such languages.

smalltalk-func2
Q132. (10 marks) Define the Smalltalk classes to mimic the Haskell declaration:

data Abc = A | B | C Integer | D [Abc]
i n s t ance Eq Abc where

A == A = True

and define the necessary = functions that have the natural semantics with the addition that A
is equal to C(0) and D(List()), and B is equal to C(1). Remember that equality is symmetric
(i.e. x==y ⇐⇒ y==x). Here is a start on the code:

Object subclass: #Abc
instanceVariableNames: ’ ’

classVariableNames: ’ ’

isZero
↑ f a l s e

isOne
↑ f a l s e

isEmpty
↑ f a l s e

contains: otherValue
↑ f a l s e

Abc subclass: #A
instanceVariableNames: ’ ’

classVariableNames: ’ ’

isZero
↑ true

= other
(other isKindOf: Abc) ifFalse: [↑ f a l s e] .
other isZero ifTrue: [↑ true] .

↑ other isEmpty

smalltalk-messages
Q133. (3 marks) When you send a message to a Smalltalk object, explain what happens if:

• the object has a method by that name

• the object does not have a method by that name, but its superclass does

• the object nor any of its superclasses have a method by that name

CPS506 16 Current Questions

smalltalk-output
In the following code,

Object subclass: #Abc
instanceVariableNames: ’ abc ␣ def ␣ ghi ’

classVariableNames: ’ ’

initialize
s e l f abc: 39 .
s e l f def: 17 .

abc
↑ abc

abc: x
abc := x

def
↑ s e l f abc + 3

def: x
def := x

Abc class
instanceVariableNames: ’ operator ’

abc
↑ s e l f new abc + 6

def
| temp |
temp := OrderedCollection new .
s e l f new def timesRepeat: [temp add: temp size − 1 0] .
↑ temp

ghi: a
| i |
i := s e l f new .
↑ {i abc . i def} collect: a

what do the following expressions evaluate to if printed? (Note the “↑” is really “ˆ”.)
Q134. Abc new

Q135. Abc new abc

Q136. Abc abc

Q137. Abc def size

Q138. Abc def last:2

Q139. Abc ghi:[:x| x+3]

Q140. What language is this?

smalltalk-pieces
Q141. (8 marks) Write the code for the method height which returns the height of the
piece (from the pivot point to the top of the piece, including the pivot row), and the method
rotate: which is passed the number of 90-degree clockwise turns to make. Assume the points
are represented as Point values relative to the pivot point (such as {-1@0. 0@0. 1@0. 2@0}
for the horizontal bar. Also assume that points have methods x and y that return the x and
y values, a method @ which constructs points, and a method rotatedClockwise that will return
the new point with the coordinates of the original point rotated 90-degrees clockwise.

Object subclass: #Piece
instanceVariableNames: ’ squares ’

CPS506 17 Current Questions

smalltalk-simpleExpression
Q142. (5 marks) For the following expressions in Smalltalk, what is the result? (could be a
number, character, string, class, or error)

2+3*5 :

7/4 :

#(3 4 5) at: 1 :

3>4 raiseTo: 2 :

3>4 negated :

#(abc def) first second :

[: x | x + 1] value: 3 :

12 class class superclass = 2 class superclass class :

3<4 class :

3 negated class :

smalltalk-suitvalue
Q143. (5 marks) Write the Smalltalk code for the method points which returns the point
value of a suit within a bridge hand. Remember that a void is worth 3, a singleton (1 card) 2,
a doubleton (2 cards) 1, Ace 4, King 3, Queen 2, Jack 1. The HandSuit object contains cards
from just one suit (stored in the instance variable cards). You might want to define additional
classes such as Card. Feel free to define any helper methods (as long as they are complete).

Object subclass: #HandSuit
instanceVariableNames: ’ cards ’

smalltalk-write
Q144. (6 marks) In a cell-based game, such as LightsOut, MineSweeper, or the GameOfLife,
we need to know how many neighbour cells are occupied. Write the code for the method
neighboursOfCell which returns a collection of non-nil neighbours. Write the code for the
method countNeighbours to return the number of occupied neighbours (you will want to use
neighboursOfCell). You can assume that the occupied, above, below, left, and right instance
variables have already been set up properly Use the following code as a start:

Object subclass: #Cell
instanceVariableNames: ’ neighbours ␣ below ␣ above ␣ left ␣ right ␣ occupied ’

add: aCell
aCell ifNotNil: [neighbours add: aCell]

CPS506 18 Current Questions

above ” re turns the Ce l l o b j e c t above t h i s one (or n i l i f a t top border)”
↑ above

below ” re turns the Ce l l o b j e c t be low t h i s one (or n i l i f a t bottom border)”
↑ below

left ” re turns the Ce l l o b j e c t l e f t of t h i s one (or n i l i f a t l e f t border)”
↑ left

right ” re turns the Ce l l o b j e c t r i g h t of t h i s one (or n i l i f a t r i g h t border)”
↑ right

occupied
↑ occupied ” true i f occupied , f a l s e o therwise ”

type-inference
Q145. (5 marks) What is type inference? What is the advantage of type inference? What
is the type signature of the following function?

abc f x = f (1 + x)

Show reasonable inference steps. What is the type signature of the following function?

ghi f g x = f (g (f x))

Show reasonable inference steps. What is the type signature of the following function?

j k l x f y = f (map (+y) x)

Show reasonable inference steps.

typing
Q146. (5 marks) Explain the difference between static and dynamic type sysems in languages.
Provide and explain a context where dynamic types are better, and explain why. Provide and
explain a context where static types are better, and explain why.

typing2
For each of these languages that you’ve studied at Ryerson, say whether it is untyped, has a
dynamic type system, or has a weak, medium or strong static type system.
Q147. C
Q148. Smalltalk
Q149. Haskell
Q150. Java
Q151. Elixir
Q152. Rust

typing3
Q153. (3 marks) Explain the difference between static and dynamic type systems in languages.

typing4
Q154. (4 marks) Explain why Haskell and Rust have such a complicated type system compared
to C, Java or Elixir, with particular reference to type-inference and type classes/traits.

CPS506 19 Current Questions

