
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 11: Ownership & Lifetime in Rust

2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Course Administration (CCPS)

3

• Getting closer! Two more lectures.
• Don’t forget about the assignments!

© Alex Ufkes, 2020, 2022

4© Alex Ufkes, 2020, 2022

Shadowing allows us
to change type

5

Shadowing –VS– Mutating

Previously

© Alex Ufkes, 2020, 2022

Mutating
does not!

Rust is VERY strongly typed:

6

Previously

© Alex Ufkes, 2020, 2022

7

Previously

© Alex Ufkes, 2020, 2022

8

Previously

© Alex Ufkes, 2020, 2022

9

Previously

© Alex Ufkes, 2020, 2022

Moving on….

10© Alex Ufkes, 2020, 2022

Ownership

11© Alex Ufkes, 2020, 2022

Arguably Rust’s most unique feature:

• In C, the programmer is responsible for allocating and
freeing heap memory. Memory leaks common!

• In Java, Smalltalk, Python, Elixir, Haskell, garbage collector
periodically looks for unused memory and frees it.

• Rust takes a third approach: A system of ownership with
rules checked at compile time.
o Thus, the program is not slowed at run-time

12

Ownership

© Alex Ufkes, 2020, 2022

Stack:
• Last in, first out
• Push/pop stack frames is fast
• Data has known, fixed size.

Heap:
• Less organized
• Slower access, follow pointers
• Data size can be unknown

• If we dynamically allocate memory in C/C++, the pointer goes on
the stack, the memory itself is in the heap.

• Heap memory is allocated by the OS at the request of the program.
• Stack memory (some fixed amount) managed by the program, no

need to involve the OS.

13

Reminder: Stack VS Heap

© Alex Ufkes, 2020, 2022

Three rules:

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value is dropped.

14

Ownership

© Alex Ufkes, 2020, 2022

This is normal, nothing new.

15

Scope in Rust

• Primitives stored on the stack behave as per usual.
• How does Rust clean up data stored on the heap?
• Consider Strings – A complex type stored on the heap.

© Alex Ufkes, 2020, 2022

16

Strings

• String literals are different
from regular strings.

• Their size is fixed, encoded
directly into the executable.

• Strings not defined as a literal
might have unknown size

• They are stored on the heap.

© Alex Ufkes, 2020, 2022

• Memory for string requested at run time.
• Memory must be returned to the OS when we’re done with the string.

• Calling String::from makes a memory request.
• Once again, this is normal behavior. In Java we would say:

String s = new String(“Hello”); to accomplish the same.

What happens when we no
longer need that string?

17

Heap Strings

© Alex Ufkes, 2020, 2022

What happens when we no longer need that string?

• Without garbage collection, we must identify when
memory is no longer being used and free it explicitly.

• This has historically been a difficult programming problem.
• Too early, variables still in scope become invalid. Too late,

waste memory. Do it twice by accident? Also a problem.
• We need to pair one allocate() to one free().

In Rust, memory is automatically returned
when the variable that owns it leaves scope.

18© Alex Ufkes, 2020, 2022

In Rust, memory is automatically returned
when the variable that owns it leaves scope.

What about having multiple references to a single object?
Freeing after one leaves scope could invalidates the others.

Three references, one object!

19© Alex Ufkes, 2020, 2022

Ownership - Three Rules:

1. Each value in Rust has a variable that’s called its owner.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value is dropped.

There can only be one!

20

But Remember!

© Alex Ufkes, 2020, 2022

• When a variable goes out of scope, Rust calls a
special function automatically called drop()

• This function is called at the closing }
• What happens if we have multiple variables

interacting with the same data?

• With primitives, we get two separate
variables stored in memory (stack)

• x and y are separate – changing one
does not affect the other

• This is typical, and efficient

21

In Rust, memory is automatically returned
when the variable that owns it leaves scope.

© Alex Ufkes, 2020, 2022

On the stack On the heap

22© Alex Ufkes, 2020, 2022

• Stack data copied; heap data is not.
• Copying heap data is more expensive.
• This is typical in most imperative languages.
• We can still potentially free data twice
• We can still potentially invalidate other

references

23© Alex Ufkes, 2020, 2022

1. Each value in Rust has a variable that’s called its owner.

2. There can only be one owner at a time.
3. When the owner goes out of scope, the value is dropped.

24© Alex Ufkes, 2020, 2022

1. Each value in Rust has a variable that’s called its owner.

2. There can only be one owner at a time.
3. When the owner goes out of scope, the value is dropped.

• When we say let s2=s1,
s1 becomes invalid.

• Thus, when it leaves scope,
memory is not freed.

• We can no longer use s1!

25© Alex Ufkes, 2020, 2022

In Rust, we say s1 gets moved to s2

26© Alex Ufkes, 2020, 2022

Like most languages, Rust can clone:

27

clone()

© Alex Ufkes, 2020, 2022

28

Like most languages, Rust can clone:

clone()

© Alex Ufkes, 2020, 2022

Passing an argument moves or copies, just like assignment:

29

Ownership and Functions

© Alex Ufkes, 2020, 2022

• Ownership moved from s to word!
• s is now invalid!
• This is very different from any other

language we’re used to.
• This doesn’t happen with primitives

because they will simply be copied.
• We get a hint:

30

Passing an argument moves or copies, just like assignment:

Ownership and Functions

© Alex Ufkes, 2020, 2022

• Ownership moved from s to word
and back to s

• s is invalid when we move to word
• word is invalid when moved to s
• Allowed because s is mutable.
• When string_pass reaches }, word

has already been moved to s
• Thus word is invalid and the string

on the heap isn’t freed.

31

Returning Ownership

© Alex Ufkes, 2020, 2022

32

Returning Ownership

© Alex Ufkes, 2020, 2022

Limiting. Forced to use return value for ownership.

• s1 moves to word, word moves to s2
• Return a tuple consisting of the

length of word, and word itself.
• len() function returns length of array.

33

Returning Ownership

© Alex Ufkes, 2020, 2022

Instead of returning a tuple, pass a reference:

• This looks like C++
• word is now a reference to s1
• What about ownership?
• What’s happening in memory?

34

Ownership: Moving VS Borrowing

© Alex Ufkes, 2020, 2022

word s1

• word is a reference to s1, it does
NOT point to the string in the heap.

• word has no ownership over s1.
• We call this borrowing.

35

Ownership: Moving VS Borrowing

© Alex Ufkes, 2020, 2022

Unlike C++, we can’t modify something we’re borrowing:

?
36

Ownership: Moving VS Borrowing

© Alex Ufkes, 2020, 2022

37

word is a mutable reference, borrowed from s1
© Alex Ufkes, 2020, 2022

Can only have one mutable borrow at a time:

When the first mutable borrow goes out of scope, we can borrow again

38

Borrowing Rules

© Alex Ufkes, 2020, 2022

• push_str must make
mutable borrow of s1

• Not allowed!

Can only have one mutable borrow at a time:

Borrowing Rules

39© Alex Ufkes, 2020, 2022

When the first mutable borrow goes out of scope, we can borrow again

Scope of r1

Scope of r2

40© Alex Ufkes, 2020, 2022

When the first mutable borrow goes out of scope, we can borrow again

41

Here, r3 is already a reference.
We’re not borrowing again.

© Alex Ufkes, 2020, 2022

fn main()
{

let mut word = String::from("Weird");
let r1 = &word;

word.push_str(", or what?");

println!("{}", r1);
}

Using an immutably borrowed value prevents mutable borrow:

Borrowing Rules

42© Alex Ufkes, 2020, 2022

These restrictions keep mutation under control

Borrowing Rules: In Short

43

In any given scope, only ONE of the following can be true:
1. We can have a single mutable borrow
2. We can have any number of immutable borrows

© Alex Ufkes, 2020, 2022

Slices

44© Alex Ufkes, 2020, 2022

Reference to a subset of an array

• We’ve seen this notation before!
• Remember that the second index

is not included

Slices

45© Alex Ufkes, 2020, 2022

• Reminder: indexes must be usize
• Pass in reference to array
• Return slice (reference to subarray)
• Array only exists once in memory
• subset and nums point to different

parts of the same memory.

Slices, Arguments, Functions

46© Alex Ufkes, 2020, 2022

… are a little bit different.

Normal so far

String Slices

47© Alex Ufkes, 2020, 2022

• &str is a reference to a string slice
• &String is a reference to a String
• String VS string slice: different types
• Other than that, the function works

the same as with numeric arrays.
• A string slice is effectively a read-

only view of a String.

String Slice Type

48© Alex Ufkes, 2020, 2022

Better to do this:

Works for both Strings and string slices

String Slice Type

49© Alex Ufkes, 2020, 2022

Recall:

In fact, string literals are slices:

• String literals are different from regular strings.
• Their size is fixed, encoded directly into the executable.
• They are immutable.

• The type of msg is &str
• It’s a slice pointing to a specific

point of the binary file.
• This is why string literals are

immutable!

String Literals

50© Alex Ufkes, 2020, 2022

Lifetime

51© Alex Ufkes, 2020, 2022

Memory Safety:
• Rust is designed to be memory safe
• Null or dangling pointers are not

permitted.

52

Rust Features

© Alex Ufkes, 2020, 2022

Rust prevents them:

dangle()
• Create String s
• Return a reference to it
• s goes out of scope when

dangle function ends.
• What happens to the

reference that was returned?

53

Dangling References

© Alex Ufkes, 2020, 2022

Lifetime?

54

Rust prevents them:

Dangling References

© Alex Ufkes, 2020, 2022

Every reference in Rust has lifetime

The lifetime of a reference is the scope for
which that reference is valid.

Lifetimes are often implicit and inferred, but
can be defined explicitly

Just like variable types!

Lifetime is a very distinct feature of Rust:

55© Alex Ufkes, 2020, 2022

• r is a reference to x
• x goes out of scope while

r is still referring to it!

Example

56© Alex Ufkes, 2020, 2022

• The Rust compiler has a “Borrow Checker” that compares scope to
determine if borrows are valid

• If one variable borrows another, the variable being borrowed must
have a lifetime at least as long as the variable doing the borrowing.

What happens if the borrow checker gets confused?

The Borrow Checker

57© Alex Ufkes, 2020, 2022

Consider:

Simple program:
• Function accepts two string slices,

returns the slice that is longer.
• Recall that slices are just references
• There’s no ownership changing here
• No moves

58

Generic Lifetimes

© Alex Ufkes, 2020, 2022

59

Consider:

Generic Lifetimes

© Alex Ufkes, 2020, 2022

The Borrow Checker can’t determine lifetime of the return value, because it’s not
clear which input argument the return value will borrow from.

More generally: The borrow checker follows certain patterns when determining
lifetime. If none of its patterns apply, we get a lifetime error.

60

Generic Lifetimes

© Alex Ufkes, 2020, 2022

• We as programmers know that this
function is perfectly safe.

• x, y refer to string literals which live
the entire duration of the program.

• HOWEVER
• What’s obvious to us is not

necessarily obvious to the compiler.
• Thus, we get compile errors.

61

Generic Lifetimes

© Alex Ufkes, 2020, 2022

It even happens when the return reference is fixed:

Generic Lifetimes

62© Alex Ufkes, 2020, 2022

When the borrow checker is confused (for whatever reason), we must be specific:

Specify generic lifetime
• Similar to generic type: <T>
• <‘a> specifies a generic lifetime, a
• &’a says this reference has lifetime a

Lifetime Annotation Syntax

63© Alex Ufkes, 2020, 2022

What does mean precisely?
• The function accepts two arguments
• Both live at least as long as lifetime a
• Also, the string slice returned will live

at least as long as lifetime a
• We don’t know what a is!
• We’re just making this promise to the

borrow checker.

Generic Lifetimes

64© Alex Ufkes, 2020, 2022

However!
• We’re NOT actually changing any lifetimes!
• We’re just explicitly indicating them to help

the confused Borrow Checker.
• The borrow checker will reject any values

that don’t adhere to these constraints.

So how can we
break this?

Generic Lifetimes

65© Alex Ufkes, 2020, 2022

• Lifetime of s1 is different from s2 and s3.
• Lifetime ‘a is the scope in which x and y are

both valid. I.e., when s1 and s2 are valid.
• When we last use s3, s1 and s2 are valid.
• Thus, the borrow checker accepts this code.
• s3 references something that is valid until

after the last time s3 is used.

Consider

66© Alex Ufkes, 2020, 2022

• Here, lifetime a excludes a reference made by s3
• s3 references something that might be out of

scope (s2 will be, s1 won’t be)
• When we last use s3, s2 is no longer valid.
• Although in this case it doesn’t matter, because

we’ve declared both s1 and s2 as string slices.
• Slices aren’t on the heap, and thus references to

them will always be valid.

Oops. Let’s try again with
Strings instead…

Now This:

67© Alex Ufkes, 2020, 2022

68© Alex Ufkes, 2020, 2022

In general, we need some sort of lifetime indication any time we’re
passing in more than one reference and returning a reference.

This is fine

As is this

Lifetime Considerations

69© Alex Ufkes, 2020, 2022

Originally, every reference required a lifetime specifier.

The Rust developers noticed some cases of reference passing were always
the same, and thus added them as patterns for the compiler to recognize

without requiring explicit lifetime annotations.

Lifetime Considerations

70© Alex Ufkes, 2020, 2022

The compiler first checks its list of known patterns

If none are found, we get a compile error such as we’ve been seeing

What are these patterns?

Lifetime Considerations

71© Alex Ufkes, 2020, 2022

1. The compiler first assigns a different lifetime to each reference
input parameter.

Is seen as:

Lifetime Inference Rules

72© Alex Ufkes, 2020, 2022

1. The compiler first assigns a different lifetime to each reference
input parameter.

2. If there is one input reference parameter, it is assigned the same
lifetime as any output references.

Is seen as:

Lifetime Inference Rules

73© Alex Ufkes, 2020, 2022

1. The compiler first assigns a different lifetime to each reference
input parameter.

2. If there is one input reference parameter, it is assigned the same
lifetime as any output references.

3. If there are multiple input references, but one of them is &self,
then the output references have the same lifetime as &self.

If, after applying these rules, there are still references
without a lifetime specifier, we get a compile error.

Lifetime Inference Rules

74© Alex Ufkes, 2020, 2022

If, after applying these rules, there are still references without
a lifetime specifier, we get a compile error.

We don’t get errors here, because applying rules 1 and 2
results in all references having annotated lifetimes

75© Alex Ufkes, 2020, 2022

We get an error here, because even after applying all three rules,
we still don’t have a lifetime annotation for the output:

1. The compiler first assigns a different
lifetime to each reference input
parameter.

2. If there is one input reference
parameter, it is assigned the same
lifetime as any output references.

3. If there are multiple input references,
but one of them is &self, then the
output references have the same
lifetime as &self.

11

Rule 1 applies, Rules 2 and 3 do not

11

76© Alex Ufkes, 2020, 2022

• No lifetime annotation
after applying rules.

• Compile error.

77

We get an error here, because even after applying all three rules,
we still don’t have a lifetime annotation for the output:

© Alex Ufkes, 2020, 2022

• A special lifetime that is simply the duration of the program.
• String literals have a static lifetime.
• Makes sense, they’re not on the heap but embedded in the executable

78

Static Lifetime

© Alex Ufkes, 2020, 2022

https://doc.rust-lang.org/book/title-page.html

Fantastic Rust Reference:

79© Alex Ufkes, 2020, 2022

80© Alex Ufkes, 2020, 2022

