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Notice!

Obligatory copyright notice in the age of digital 
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students 
registered in course C/CPS 506 can use this material for the purposes 
of this course but no other use is permitted, and there can be no sale 
or transfer or use of the work for any other purpose without explicit 
permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022



Course Administration
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• Getting closer! Rust is our last language.
• Don’t forget about the assignments!
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Moving on…

…to imperative.

Rust is an imperative language. However, we’ll see many cool features 
that remind us of the functional languages we’ve seen.
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• Grew out of a personal project by Mozilla 
employee Graydon Hoare in 2006

• Mozilla began sponsoring the project in 2009
• Officially announced in 2010
• Rust compiler successfully tested in 2011
• Pre-alpha version released in 2012
• Rust 1.0, the first stable release, arrived on 

May 15, 2015
• Youngest language we’ve seen so far
• Open source
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Rust History
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Systems Programming Language:
• In contrast with application

programming languages.
• System software includes things like 

operating systems, utility software, 
device drivers, compilers, linkers, etc.

• System languages tend to feature more 
direct access to physical hardware of a 
given machine.
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Rust Features
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Syntax:
• Similar to C/C++
• Blocks of code delimited by { }
• Familiar control structures supported 

(if, else, while, for, etc.)
• Supports pattern matching! (match)
• Need not use return, last expression 

creates return value
• Functions largely composed of 

expressions
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Rust Features
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Memory Safety:
• Rust is designed to be memory safe
• Null or dangling pointers are not permitted.
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Rust Features
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“Null or dangling pointers are not permitted”

• In C, we’re allowed to try and 
access any memory we want.

• This code compiles! 
• It produces a run-time error when 

we try and index into pointer x.
• Overrunning array bounds does not 

necessarily give a run time error!
• Very unsafe use of memory.
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“Null or dangling pointers are not permitted”

Java is safer:
• This code compiles, but always

throws an exception when we 
access outside array bounds.

• C/C++ only errors if going out of 
bounds accesses memory that 
your program doesn’t have write 
permission for.

• Java still allows dangling 
references. 

• nums2 can be declared without 
instantiating its object.
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Memory Safety:
• Rust is designed to be memory safe
• Null or dangling pointers are not permitted.
• What about linked lists? Null pointers are useful.
• Rust defines an option type, which can be used 

to test if a pointer has Some value or None
• What does this remind you of?
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Rust Features
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Memory Management:
• Rust does not do garbage collection
• Resource acquisition is initialization
• RAII - Originated in C++
• Constructor used to acquire and initialize objects
• Resource deallocation is done by the destructor. 
• No valid reference to object == no object.
• Not so in Java! Up to garbage collector.
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Rust Features
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Types and Polymorphism:
• Type system supports mechanism called 

“traits”
• Directly inspired by Haskell’s type classes
• Supports type inference for variables 

declared with let keyword.
• Compile error if inference fails.
• Keyword mut for mutable variables.
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Rust Features
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Pattern Matching:
• Rust supports pattern matching!
• Pattern matching is considered a 

sticking point for people learning Rust.
• We already have experience with it 
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Rust Features
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Strongly, statically typed
• Strong typing means limited implicit type 

conversions at compile time.
• C is happy to convert between numeric 

types without issue. Perhaps a compile 
warning in C++.

• Java raises compile error if there’s a loss 
of precision (double to float for example).
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Rust & Safety
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No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0
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Rust & Safety
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No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0
• Use of variable before it’s initialized

o In C, we get whatever was in 
memory before that. 

o Only globals auto-initialize to 0
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Rust & Safety
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No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0
• Use of variable before it’s initialized

o In C, we get whatever was in 
memory before that. 

o Only globals auto-initialize to 0
• Array index out of bounds

o May or may not cause runtime error 
(in C), depends who owns memory
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Rust & Safety
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No “Undefined Behavior”
• Signed integer overflow & optimization

X+1 > X
• If overflow is undefined, compiler can 

just optimize this to simply true.
• Dangerous if X can overflow! 
• Forcing compiler to consider overflow 

means we lose certain optimizations.
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Rust & Safety
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• We do not employ any particularly cutting-edge technologies. 
Old, established techniques are better.

• We do not prize expressiveness, minimalism or elegance above 
other goals. These are desirable but subordinate goals.

• We do not intend to cover the complete feature-set of C++, or 
any other language. Rust should provide majority-case features.

• We do not intend to be 100% static, 100% safe, 100% reflective, 
or too dogmatic in any other sense. Trade-offs exist.

• We do not demand that Rust run on “every possible platform”. 
It must eventually work without unnecessary compromises on 
widely-used hardware and software platforms.
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Rust Non-Goals
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Installing Rust

https://www.rust-lang.org/en-US/index.html
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Installing Rust
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Any text editor will do, but I like VSCode:

Visual Studio Code:
• Supports Rust syntax coloring
• Useful for other languages
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Editing Rust Code
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Command Line - rustc
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Compiling Rust Code
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fn main() {
println!("Hello, world!");

}

Like C, C++, Java, Haskell, and many others, main() 
defines the entry point for executing a Rust program.

Much of the syntax is reminiscent of C/C++
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fn main() {
println!("Hello, world!");

}

println vs println!
• The ! indicates we’re calling a macro.
• A standard function call doesn’t include !
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• By default, Rust variables are immutable
• Once initialized, can’t change. 
• Like final or const in other languages
• Declare using let keyword:

fn main() {
let x = 7;
println!("value: {}", x);

}
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Variables
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fn main() {
let x = 7;
println!("value: {}", x);

}

Curly brace pair in a println string acts 
as a C/C++ style placeholder
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fn main() {
let x = 7;
x = 5;
println!("value: {}", x);

}
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Variables
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fn main() {
let mut x = 7;
x = 5;
println!("value: {}", x);

}

Use mut keyword:

• We get a warning, and it’s sensible.
• We change the value of x before the 

initial value is ever read.
• Pointless.
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Mutable Variables
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Rust still has them:

• Use const instead of let
• Always immutable
• Can be declared in global 

scope, unlike let
• Must indicate data type (u32)
• More on types coming up.
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Constant/Global Variables
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Constant/Global Variables

Can be declared in global scope, unlike let

© Alex Ufkes, 2020, 2022



Variables with the same name?

In Java, variables can have 
the same name so long as 

their scope does not overlap:

int r = 10;
if (x >= 0) {

double r = Math.sqrt(x);
}

BAD

if (x >= 0) {
double r = Math.sqrt(x); }

else {
float r = 0; } OK
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Shadowing
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C++ is less strict. Scopes 
can overlap, but they 

can’t be identical:

int r = 10;
if (x >= 0) {

double r = sqrt(4.0);
}

OK

if (x >= 0) {
double r = sqrt(4.0);
float r = 0;

} BAD
39

Variables with the same name?

Shadowing
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Variables with the same name?

Shadowing
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• What we’re doing here is like 
re-binding in Haskell or Elixir.

• This doesn’t work with 
mutable variables.

• Think of this mathematically –
We’re simply saying let x = 
something else.
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Variables with the same name?

Shadowing
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Why not just use shadowing? Why do we need mut?

• Mutable variables are stuck with their type.
• Can’t assign a value of a different type.

42

Shadowing VS mut
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• With shadowing (rebinding) we can use different types.
• Again, we get a warning because we’re rebinding before 

the original binding is ever used.
43

Why not just use shadowing? Why do we need mut?

Shadowing VS mut
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• With mut, we’re mutating a variable in memory. 
• Storing a different value in the same variable. 
• The name still refers to the same place, thus the 

type must stay the same.

• With shadowing, we’re getting a new variable in 
memory each time. 

• We’re changing what a given name is referring to.
• We’re not changing the existing value.
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Why not just use shadowing? Why do we need mut?

Shadowing VS mut
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Two subsets: Scalar and Compound

Reminder: Rust is statically typed. Must know all variable types at compile time.

Scalar types represent a single value:
• Rust has four: integers, floating-point, Booleans, characters.

Compound types group multiple values:
• Two primitive compound types: tuples and arrays.
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Data Types
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Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

arch isize usize

• Signed integers are stored 
using 2s comp

• Arch will be 32 bits on a 32 
bit system, 64 bits on a 64 
bit system.

• When not specified, Rust 
defaults to i32
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Scalar Types: Integers
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Rust has type inference, but we can be explicit:
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Specify Type?
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Number literals Example

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte (u8 only) b'A'

In addition to just writing the value…

Notice the _ 
• This is a handy visual sugar
• Hard to count the zeroes in 1000000000. 

What number is this? 
• Easy to see 1_000_000_000 is one billion.

Bytes can be character literals
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Integer Literals
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• Two kinds – 32 and 64 bit (float and double, single and double precision) 
• Represented using standard IEEE-754

Default

49

Scalar Types: Floating Point
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Numeric Operations
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Numeric Operations
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Rust doesn’t mess around when it 
comes to implicit type conversion.
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Mixed Expressions?
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Mixed Expressions?
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• Comments same as Java/C/C++
• Both block and single-line

Cast using: as type

Finally!
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Mixed Expressions?
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Division may truncate, good reason to avoid implicit conversion…
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Mixed Expressions?
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• Adding float to int means converting the 
integer to a floating-point type, then adding.

• CPU doesn’t add different types. 
• Float and int arithmetic is done using different 

instructions, in different locations on CPU.
• It’s possible to introduce errors in precision!
• An integer in binary is exactly precise.
• The same value represented as a floating point 

may lose significant digits.
• Most languages don’t even warn about this –

Rust doesn’t allow it at all.
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Why?!
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true, false. Easy:
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Scalar Types: Boolean
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Rust supports Unicode:
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Scalar Types: Characters
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Tuples can be heterogeneous, and we need 
not specify type. Rust can infer it.
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Compound Types: Tuples

© Alex Ufkes, 2020, 2022



De-structuring!
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Accessing Elements
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Can also access directly:

Can we go out of bounds?
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Accessing Elements
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Out of bounds:

Compile error in Rust
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Accessing Elements
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Can we fool it?

Nope.
64

Accessing Elements
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Arrays

Arrays in Rust are: homogeneous, zero-indexed, fixed in size. 
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Compound Types
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Out of bounds:

Runtime error, much like Java. 
Prevents out of bounds array accesses.
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Accessing Elements
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Same rules as Haskell:
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Array of Tuples
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Same rules as Haskell: Tuple types must be the same
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Array of Tuples
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4 Scalar types:
Integer – u8, u16, u32, u64, usize, i8, i16, i32, i64, isize
Floating Point – f32, f64
Boolean – bool (true, false)
Character – Unicode: ‘Z’, ‘a’, ‘&’, ‘\u{00C5}’, etc

2 Compound types:
Tuple – heterogeneous 
Arrays – homogeneous

Rust supports other data structures such 
as strings and vectors. These are not 

base types, but very useful.
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Types & Literals: Summary
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String literals and escape 
characters are as expected

70

Strings
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We’ve seen main()
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Functions

• Returns nothing, accepts 
no arguments.

• Convention for naming 
functions is snake_case.

• Words separated by 
underscores. 
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Unlike C/C++, Rust doesn’t 
care about ordering
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Functions
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identifier: type

• Parameters separated by commas.
• Indicating type is mandatory
• Nothing too unusual here
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Parameters
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Careful Now…
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Two types of statements:
• Declaration statements return nothing
• Expression statements return empty tuple ()

let x = 6; // This is a declaration statement

The above does not return a value. We can’t do the following:

let y = (let x = 6); 

Rust is primarily expression based, but still has statements.

Statements & Expressions
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Two types of statements:
• Declaration statements return nothing
• Expression statements return empty tuple ()

5 + 2; // This is an expression statement

The above expression is evaluated, but the result is ignored (not saved).

5 + 2 is an expression. It evaluates to 7.
y = 5+2; is an expression statement. It returns (), but the

result of the nested expression 5+2 is saved to y

Rust is primarily expression based, but still has statements.

Statements & Expressions

77© Alex Ufkes, 2020, 2022



let y = (let x = 6); 

Statements & Expressions
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OK

Not OK… but what does this error mean?

Statements & Expressions
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• Variable y gets re-assigned.
• The expression statement (y=8) returns an empty tuple in Rust.
• Can’t assign an empty tuple to a variable declared to hold i32!

Statements & Expressions
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Here:
• Value of x will be 3
• Value of y will be () 

empty tuple

Statements & Expressions
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x + 6 // This is an expression

x = 5 + 6; // This is an expression statement 
// containing an expression

Expression

Expression 
statement

In fact:
let x = 6;

Expression

Declaration 
statement

Statements & Expressions
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Creating a new scope block?

We can do this in Java and C/C++, though again it isn’t so common:

Not a control structure or 
method, just a block of code 

with its own scope
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Scope Blocks as Expressions
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Scope blocks like this are expressions in Rust:

There’s a few things going on here:
• We’re trying to bind a value to y.
• Thus, the block { } should evaluate to 

something.
• Notice there’s no semicolon after z + 1
• z + 1 is an expression. 
• Adding a semi-colon would make it an 

expression statement.
• Thus, the block { } would return ().
• Probably not what we want.
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Scope Blocks as Expressions
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let y = { let x = 3; x + 1 } ;

expression!

This whole thing is a declaration statement
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Scope blocks like this are expressions in Rust:

Scope Blocks as Expressions
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Scope blocks like this are expressions in Rust:

Scope Blocks as Expressions
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Think of functions the same way. 
The last line should be an expression – no semi-colon.

-> type
• Explicitly indicate return type
• Result of expression gets returned

87

Return Value
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Add semicolon? It becomes expression statement, returns (), type mismatch:

Return Value
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Control 
Flow
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• As with other imperative languages, the else is optional. 
• Recall that this is not the case with Haskell!
• We were required to have a complete if-then-else
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if / else
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Mandatory.

In C/C++ (and Elixir, with caveats):
• Non-zero values are “truthy”.
• Only 0/nil considered false.

In Java (and Haskell, Rust):
• Conditions must be Boolean

if (3.141592)
cout << “Valid!” << endl;

if (3.141592)
System.out.println(

“Compile Error”);

Converting non-Boolean to Boolean requires implicit conversion, 
which, as we’ve seen, Rust does not do.
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Boolean Conditions?
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• As we’d expect.
• We use { } even though there’s only 

one statement per branch
• This is required.
• Why? Rust treats these as blocks 

whose last line can be an expression.
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if / else if / else
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if / else if / else
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• let state = {…}; is a statement
• {…} is an expression that will evaluate 

to a string. if == expression!
• “Frozen”, “Liquid”, or “Boiling”
• Each option is in a scope block { }
• The value of a scope block is the last 

expression
• Leaving the ; off makes these strings 

expressions.
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if / else if / else
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if / else if / else
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Remember: Strong, static typing. No implicit conversion!
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Problem?

Might return float, might return int
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Looping

97© Alex Ufkes, 2020, 2022



Just like  while(true){} in Java
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Looping

© Alex Ufkes, 2020, 2022



• Similar in form to other 
imperative languages.

• Rust understands +=
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Conditional Looping: while
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Just like a for loop in Python:

• Invoke iter() method of array nums
• elem takes the value of each 

element in the array.
• Safe! Never go out of bounds.
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Conditional Looping: for
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Use .. to create a range
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Conditional Looping: for

• Create a Range containing 0 to 9
• Top of range not included!
• Just like range() in Python
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Wait, what?
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A loop is a loop is a loop
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• We didn’t specify the type of i, but 
shouldn’t it default to i32?

• Rust infers type, i32 should be default.
• HOWEVER!
• Rust doesn’t allow signed integers to 

be used as array indexes!
• It inferred the type as unsigned! Thus 

checking less than zero is pointless.
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Wait, what?
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Rust doesn’t allow signed integers to be used as array indexes!
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Need to adjust our logic a bit…
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https://doc.rust-lang.org/book/second-edition/

Fantastic Rust Reference:
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