
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 10: Rust intro, typing, and control flow

2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Course Administration

3

• Getting closer! Rust is our last language.
• Don’t forget about the assignments!

© Alex Ufkes, 2020, 2022

Moving on…

…to imperative.

Rust is an imperative language. However, we’ll see many cool features
that remind us of the functional languages we’ve seen.

4© Alex Ufkes, 2020, 2022

5© Alex Ufkes, 2020, 2022

• Grew out of a personal project by Mozilla
employee Graydon Hoare in 2006

• Mozilla began sponsoring the project in 2009
• Officially announced in 2010
• Rust compiler successfully tested in 2011
• Pre-alpha version released in 2012
• Rust 1.0, the first stable release, arrived on

May 15, 2015
• Youngest language we’ve seen so far
• Open source

6

Rust History

© Alex Ufkes, 2020, 2022

Systems Programming Language:
• In contrast with application

programming languages.
• System software includes things like

operating systems, utility software,
device drivers, compilers, linkers, etc.

• System languages tend to feature more
direct access to physical hardware of a
given machine.

7

Rust Features

© Alex Ufkes, 2020, 2022

Syntax:
• Similar to C/C++
• Blocks of code delimited by { }
• Familiar control structures supported

(if, else, while, for, etc.)
• Supports pattern matching! (match)
• Need not use return, last expression

creates return value
• Functions largely composed of

expressions

8

Rust Features

© Alex Ufkes, 2020, 2022

Memory Safety:
• Rust is designed to be memory safe
• Null or dangling pointers are not permitted.

9

Rust Features

© Alex Ufkes, 2020, 2022

“Null or dangling pointers are not permitted”

• In C, we’re allowed to try and
access any memory we want.

• This code compiles!
• It produces a run-time error when

we try and index into pointer x.
• Overrunning array bounds does not

necessarily give a run time error!
• Very unsafe use of memory.

10© Alex Ufkes, 2020, 2022

“Null or dangling pointers are not permitted”

Java is safer:
• This code compiles, but always

throws an exception when we
access outside array bounds.

• C/C++ only errors if going out of
bounds accesses memory that
your program doesn’t have write
permission for.

• Java still allows dangling
references.

• nums2 can be declared without
instantiating its object.

11© Alex Ufkes, 2020, 2022

Memory Safety:
• Rust is designed to be memory safe
• Null or dangling pointers are not permitted.
• What about linked lists? Null pointers are useful.
• Rust defines an option type, which can be used

to test if a pointer has Some value or None
• What does this remind you of?

12

Rust Features

© Alex Ufkes, 2020, 2022

Memory Management:
• Rust does not do garbage collection
• Resource acquisition is initialization
• RAII - Originated in C++
• Constructor used to acquire and initialize objects
• Resource deallocation is done by the destructor.
• No valid reference to object == no object.
• Not so in Java! Up to garbage collector.

13

Rust Features

© Alex Ufkes, 2020, 2022

Types and Polymorphism:
• Type system supports mechanism called

“traits”
• Directly inspired by Haskell’s type classes
• Supports type inference for variables

declared with let keyword.
• Compile error if inference fails.
• Keyword mut for mutable variables.

14

Rust Features

© Alex Ufkes, 2020, 2022

Pattern Matching:
• Rust supports pattern matching!
• Pattern matching is considered a

sticking point for people learning Rust.
• We already have experience with it

15

Rust Features

© Alex Ufkes, 2020, 2022

Strongly, statically typed
• Strong typing means limited implicit type

conversions at compile time.
• C is happy to convert between numeric

types without issue. Perhaps a compile
warning in C++.

• Java raises compile error if there’s a loss
of precision (double to float for example).

16

Rust & Safety

© Alex Ufkes, 2020, 2022

17© Alex Ufkes, 2020, 2022

18© Alex Ufkes, 2020, 2022

No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0

19

Rust & Safety

© Alex Ufkes, 2020, 2022

No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0
• Use of variable before it’s initialized

o In C, we get whatever was in
memory before that.

o Only globals auto-initialize to 0

20

Rust & Safety

© Alex Ufkes, 2020, 2022

No “Undefined Behavior”
• Null pointer dereferencing

o Attempt to dereference address 0
• Use of variable before it’s initialized

o In C, we get whatever was in
memory before that.

o Only globals auto-initialize to 0
• Array index out of bounds

o May or may not cause runtime error
(in C), depends who owns memory

21

Rust & Safety

© Alex Ufkes, 2020, 2022

22© Alex Ufkes, 2020, 2022

No “Undefined Behavior”
• Signed integer overflow & optimization

X+1 > X
• If overflow is undefined, compiler can

just optimize this to simply true.
• Dangerous if X can overflow!
• Forcing compiler to consider overflow

means we lose certain optimizations.

23

Rust & Safety

© Alex Ufkes, 2020, 2022

• We do not employ any particularly cutting-edge technologies.
Old, established techniques are better.

• We do not prize expressiveness, minimalism or elegance above
other goals. These are desirable but subordinate goals.

• We do not intend to cover the complete feature-set of C++, or
any other language. Rust should provide majority-case features.

• We do not intend to be 100% static, 100% safe, 100% reflective,
or too dogmatic in any other sense. Trade-offs exist.

• We do not demand that Rust run on “every possible platform”.
It must eventually work without unnecessary compromises on
widely-used hardware and software platforms.

24

Rust Non-Goals

© Alex Ufkes, 2020, 2022

Installing Rust

https://www.rust-lang.org/en-US/index.html

25© Alex Ufkes, 2020, 2022

Installing Rust

26© Alex Ufkes, 2020, 2022

Any text editor will do, but I like VSCode:

Visual Studio Code:
• Supports Rust syntax coloring
• Useful for other languages

27

Editing Rust Code

© Alex Ufkes, 2020, 2022

Command Line - rustc

28

Compiling Rust Code

© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 29

fn main() {
println!("Hello, world!");

}

Like C, C++, Java, Haskell, and many others, main()
defines the entry point for executing a Rust program.

Much of the syntax is reminiscent of C/C++

30© Alex Ufkes, 2020, 2022

fn main() {
println!("Hello, world!");

}

println vs println!
• The ! indicates we’re calling a macro.
• A standard function call doesn’t include !

31© Alex Ufkes, 2020, 2022

• By default, Rust variables are immutable
• Once initialized, can’t change.
• Like final or const in other languages
• Declare using let keyword:

fn main() {
let x = 7;
println!("value: {}", x);

}

32

Variables

© Alex Ufkes, 2020, 2022

fn main() {
let x = 7;
println!("value: {}", x);

}

Curly brace pair in a println string acts
as a C/C++ style placeholder

33© Alex Ufkes, 2020, 2022

fn main() {
let x = 7;
x = 5;
println!("value: {}", x);

}

34

Variables

© Alex Ufkes, 2020, 2022

fn main() {
let mut x = 7;
x = 5;
println!("value: {}", x);

}

Use mut keyword:

• We get a warning, and it’s sensible.
• We change the value of x before the

initial value is ever read.
• Pointless.

35

Mutable Variables

© Alex Ufkes, 2020, 2022

Rust still has them:

• Use const instead of let
• Always immutable
• Can be declared in global

scope, unlike let
• Must indicate data type (u32)
• More on types coming up.

36

Constant/Global Variables

© Alex Ufkes, 2020, 2022

37

Constant/Global Variables

Can be declared in global scope, unlike let

© Alex Ufkes, 2020, 2022

Variables with the same name?

In Java, variables can have
the same name so long as

their scope does not overlap:

int r = 10;
if (x >= 0) {

double r = Math.sqrt(x);
}

BAD

if (x >= 0) {
double r = Math.sqrt(x); }

else {
float r = 0; } OK

38

Shadowing

© Alex Ufkes, 2020, 2022

C++ is less strict. Scopes
can overlap, but they

can’t be identical:

int r = 10;
if (x >= 0) {

double r = sqrt(4.0);
}

OK

if (x >= 0) {
double r = sqrt(4.0);
float r = 0;

} BAD
39

Variables with the same name?

Shadowing

© Alex Ufkes, 2020, 2022

40

Variables with the same name?

Shadowing

© Alex Ufkes, 2020, 2022

• What we’re doing here is like
re-binding in Haskell or Elixir.

• This doesn’t work with
mutable variables.

• Think of this mathematically –
We’re simply saying let x =
something else.

41

Variables with the same name?

Shadowing

© Alex Ufkes, 2020, 2022

Why not just use shadowing? Why do we need mut?

• Mutable variables are stuck with their type.
• Can’t assign a value of a different type.

42

Shadowing VS mut

© Alex Ufkes, 2020, 2022

• With shadowing (rebinding) we can use different types.
• Again, we get a warning because we’re rebinding before

the original binding is ever used.
43

Why not just use shadowing? Why do we need mut?

Shadowing VS mut

© Alex Ufkes, 2020, 2022

• With mut, we’re mutating a variable in memory.
• Storing a different value in the same variable.
• The name still refers to the same place, thus the

type must stay the same.

• With shadowing, we’re getting a new variable in
memory each time.

• We’re changing what a given name is referring to.
• We’re not changing the existing value.

44

Why not just use shadowing? Why do we need mut?

Shadowing VS mut

© Alex Ufkes, 2020, 2022

Two subsets: Scalar and Compound

Reminder: Rust is statically typed. Must know all variable types at compile time.

Scalar types represent a single value:
• Rust has four: integers, floating-point, Booleans, characters.

Compound types group multiple values:
• Two primitive compound types: tuples and arrays.

45

Data Types

© Alex Ufkes, 2020, 2022

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

32-bit i32 u32

64-bit i64 u64

arch isize usize

• Signed integers are stored
using 2s comp

• Arch will be 32 bits on a 32
bit system, 64 bits on a 64
bit system.

• When not specified, Rust
defaults to i32

46

Scalar Types: Integers

© Alex Ufkes, 2020, 2022

Rust has type inference, but we can be explicit:

47

Specify Type?

© Alex Ufkes, 2020, 2022

Number literals Example

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte (u8 only) b'A'

In addition to just writing the value…

Notice the _
• This is a handy visual sugar
• Hard to count the zeroes in 1000000000.

What number is this?
• Easy to see 1_000_000_000 is one billion.

Bytes can be character literals

48

Integer Literals

© Alex Ufkes, 2020, 2022

• Two kinds – 32 and 64 bit (float and double, single and double precision)
• Represented using standard IEEE-754

Default

49

Scalar Types: Floating Point

© Alex Ufkes, 2020, 2022

50

Numeric Operations

© Alex Ufkes, 2020, 2022

51

Numeric Operations

© Alex Ufkes, 2020, 2022

Rust doesn’t mess around when it
comes to implicit type conversion.

52

Mixed Expressions?

© Alex Ufkes, 2020, 2022

53

Mixed Expressions?

© Alex Ufkes, 2020, 2022

• Comments same as Java/C/C++
• Both block and single-line

Cast using: as type

Finally!
54

Mixed Expressions?

© Alex Ufkes, 2020, 2022

Division may truncate, good reason to avoid implicit conversion…

55

Mixed Expressions?

© Alex Ufkes, 2020, 2022

• Adding float to int means converting the
integer to a floating-point type, then adding.

• CPU doesn’t add different types.
• Float and int arithmetic is done using different

instructions, in different locations on CPU.
• It’s possible to introduce errors in precision!
• An integer in binary is exactly precise.
• The same value represented as a floating point

may lose significant digits.
• Most languages don’t even warn about this –

Rust doesn’t allow it at all.

56

Why?!

© Alex Ufkes, 2020, 2022

57© Alex Ufkes, 2020, 2022

true, false. Easy:

58

Scalar Types: Boolean

© Alex Ufkes, 2020, 2022

Rust supports Unicode:

59

Scalar Types: Characters

© Alex Ufkes, 2020, 2022

Tuples can be heterogeneous, and we need
not specify type. Rust can infer it.

60

Compound Types: Tuples

© Alex Ufkes, 2020, 2022

De-structuring!

61

Accessing Elements

© Alex Ufkes, 2020, 2022

Can also access directly:

Can we go out of bounds?

62

Accessing Elements

© Alex Ufkes, 2020, 2022

Out of bounds:

Compile error in Rust
63

Accessing Elements

© Alex Ufkes, 2020, 2022

Can we fool it?

Nope.
64

Accessing Elements

© Alex Ufkes, 2020, 2022

Arrays

Arrays in Rust are: homogeneous, zero-indexed, fixed in size.

65

Compound Types

© Alex Ufkes, 2020, 2022

Out of bounds:

Runtime error, much like Java.
Prevents out of bounds array accesses.

66

Accessing Elements

© Alex Ufkes, 2020, 2022

Same rules as Haskell:

67

Array of Tuples

© Alex Ufkes, 2020, 2022

Same rules as Haskell: Tuple types must be the same

68

Array of Tuples

© Alex Ufkes, 2020, 2022

4 Scalar types:
Integer – u8, u16, u32, u64, usize, i8, i16, i32, i64, isize
Floating Point – f32, f64
Boolean – bool (true, false)
Character – Unicode: ‘Z’, ‘a’, ‘&’, ‘\u{00C5}’, etc

2 Compound types:
Tuple – heterogeneous
Arrays – homogeneous

Rust supports other data structures such
as strings and vectors. These are not

base types, but very useful.

69

Types & Literals: Summary

© Alex Ufkes, 2020, 2022

String literals and escape
characters are as expected

70

Strings

© Alex Ufkes, 2020, 2022

71© Alex Ufkes, 2020, 2022

We’ve seen main()

72

Functions

• Returns nothing, accepts
no arguments.

• Convention for naming
functions is snake_case.

• Words separated by
underscores.

© Alex Ufkes, 2020, 2022

Unlike C/C++, Rust doesn’t
care about ordering

73

Functions

© Alex Ufkes, 2020, 2022

identifier: type

• Parameters separated by commas.
• Indicating type is mandatory
• Nothing too unusual here

74

Parameters

© Alex Ufkes, 2020, 2022

75

Careful Now…

© Alex Ufkes, 2020, 2022

Two types of statements:
• Declaration statements return nothing
• Expression statements return empty tuple ()

let x = 6; // This is a declaration statement

The above does not return a value. We can’t do the following:

let y = (let x = 6);

Rust is primarily expression based, but still has statements.

Statements & Expressions

76© Alex Ufkes, 2020, 2022

Two types of statements:
• Declaration statements return nothing
• Expression statements return empty tuple ()

5 + 2; // This is an expression statement

The above expression is evaluated, but the result is ignored (not saved).

5 + 2 is an expression. It evaluates to 7.
y = 5+2; is an expression statement. It returns (), but the

result of the nested expression 5+2 is saved to y

Rust is primarily expression based, but still has statements.

Statements & Expressions

77© Alex Ufkes, 2020, 2022

let y = (let x = 6);

Statements & Expressions

78© Alex Ufkes, 2020, 2022

OK

Not OK… but what does this error mean?

Statements & Expressions

79© Alex Ufkes, 2020, 2022

• Variable y gets re-assigned.
• The expression statement (y=8) returns an empty tuple in Rust.
• Can’t assign an empty tuple to a variable declared to hold i32!

Statements & Expressions

80© Alex Ufkes, 2020, 2022

Here:
• Value of x will be 3
• Value of y will be ()

empty tuple

Statements & Expressions

81© Alex Ufkes, 2020, 2022

x + 6 // This is an expression

x = 5 + 6; // This is an expression statement
// containing an expression

Expression

Expression
statement

In fact:
let x = 6;

Expression

Declaration
statement

Statements & Expressions

82© Alex Ufkes, 2020, 2022

Creating a new scope block?

We can do this in Java and C/C++, though again it isn’t so common:

Not a control structure or
method, just a block of code

with its own scope

83

Scope Blocks as Expressions

© Alex Ufkes, 2020, 2022

Scope blocks like this are expressions in Rust:

There’s a few things going on here:
• We’re trying to bind a value to y.
• Thus, the block { } should evaluate to

something.
• Notice there’s no semicolon after z + 1
• z + 1 is an expression.
• Adding a semi-colon would make it an

expression statement.
• Thus, the block { } would return ().
• Probably not what we want.

84

Scope Blocks as Expressions

© Alex Ufkes, 2020, 2022

let y = { let x = 3; x + 1 } ;

expression!

This whole thing is a declaration statement

85

Scope blocks like this are expressions in Rust:

Scope Blocks as Expressions

© Alex Ufkes, 2020, 2022

86

Scope blocks like this are expressions in Rust:

Scope Blocks as Expressions

© Alex Ufkes, 2020, 2022

Think of functions the same way.
The last line should be an expression – no semi-colon.

-> type
• Explicitly indicate return type
• Result of expression gets returned

87

Return Value

© Alex Ufkes, 2020, 2022

Add semicolon? It becomes expression statement, returns (), type mismatch:

Return Value

88© Alex Ufkes, 2020, 2022

89

Control
Flow

© Alex Ufkes, 2020, 2022

• As with other imperative languages, the else is optional.
• Recall that this is not the case with Haskell!
• We were required to have a complete if-then-else

90

if / else

© Alex Ufkes, 2020, 2022

Mandatory.

In C/C++ (and Elixir, with caveats):
• Non-zero values are “truthy”.
• Only 0/nil considered false.

In Java (and Haskell, Rust):
• Conditions must be Boolean

if (3.141592)
cout << “Valid!” << endl;

if (3.141592)
System.out.println(

“Compile Error”);

Converting non-Boolean to Boolean requires implicit conversion,
which, as we’ve seen, Rust does not do.

91

Boolean Conditions?

© Alex Ufkes, 2020, 2022

• As we’d expect.
• We use { } even though there’s only

one statement per branch
• This is required.
• Why? Rust treats these as blocks

whose last line can be an expression.

92

if / else if / else

© Alex Ufkes, 2020, 2022

93

if / else if / else

© Alex Ufkes, 2020, 2022

• let state = {…}; is a statement
• {…} is an expression that will evaluate

to a string. if == expression!
• “Frozen”, “Liquid”, or “Boiling”
• Each option is in a scope block { }
• The value of a scope block is the last

expression
• Leaving the ; off makes these strings

expressions.

94

if / else if / else

© Alex Ufkes, 2020, 2022

95

if / else if / else

© Alex Ufkes, 2020, 2022

Remember: Strong, static typing. No implicit conversion!

96

Problem?

Might return float, might return int

© Alex Ufkes, 2020, 2022

Looping

97© Alex Ufkes, 2020, 2022

Just like while(true){} in Java

98

Looping

© Alex Ufkes, 2020, 2022

• Similar in form to other
imperative languages.

• Rust understands +=

99

Conditional Looping: while

© Alex Ufkes, 2020, 2022

Just like a for loop in Python:

• Invoke iter() method of array nums
• elem takes the value of each

element in the array.
• Safe! Never go out of bounds.

100

Conditional Looping: for

© Alex Ufkes, 2020, 2022

Use .. to create a range

101

Conditional Looping: for

• Create a Range containing 0 to 9
• Top of range not included!
• Just like range() in Python

© Alex Ufkes, 2020, 2022

Wait, what?
102

A loop is a loop is a loop

© Alex Ufkes, 2020, 2022

• We didn’t specify the type of i, but
shouldn’t it default to i32?

• Rust infers type, i32 should be default.
• HOWEVER!
• Rust doesn’t allow signed integers to

be used as array indexes!
• It inferred the type as unsigned! Thus

checking less than zero is pointless.

103

Wait, what?

© Alex Ufkes, 2020, 2022

Rust doesn’t allow signed integers to be used as array indexes!

104© Alex Ufkes, 2020, 2022

Need to adjust our logic a bit…

105© Alex Ufkes, 2020, 2022

https://doc.rust-lang.org/book/second-edition/

Fantastic Rust Reference:

106© Alex Ufkes, 2020, 2022

107© Alex Ufkes, 2020, 2022

