
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 10: Typing, binding, scope

2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Type Systems

3© Alex Ufkes, 2020, 2022

• A set of rules that assigns a property called type to constructs of a program.
• These constructs include variables, functions, expressions, etc.

Type System

4© Alex Ufkes, 2020, 2022

The whole point is to reduce bugs.
• For example, if a pattern of 32 bits has been encoded using

2s complement, we don’t want to read it using IEEE 754
• And we can do this in many languages!

Declare large 64-bit integer

Print as int, print as double

• The 2s comp bit pattern was read as
an IEEE 754 double.

• (The integer constant was deliberately
picked to produce a bit pattern that
would yield 1.000000 as double)

5© Alex Ufkes, 2020, 2022

Clearly, type checking isn’t performed in the context of a
printf statement in C++

• Think of type checking as trying to fit puzzle pieces together.
• Does the output type of a function match the variable we’re

trying to store it in?
• Do the input arguments to a function match the types

indicated in the parameter list?
• If no, will we allow implicit conversion?

Type Checking

6© Alex Ufkes, 2020, 2022

Statically typed languages perform type checking at compile time
• Checked while converting source code to machine (or byte) code

Dynamically typed languages perform type checking at run-time
• Checked on the fly while instructions are being executed.

Statically Typed languages: C/C++, Java, Haskell, Rust

Dynamically Typed languages: Python, Smalltalk, Elixir

When are types checked?

Static VS Dynamic

7© Alex Ufkes, 2020, 2022

Static Type Checking

8© Alex Ufkes, 2020, 2022

Type (or in this case type
class) assigned to function

Static Type Checking

© Alex Ufkes, 2020, 2022 9

© Alex Ufkes, 2020, 2022 10

Static Type Checking

Static Type Checking

© Alex Ufkes, 2020, 2022 11

Rust is statically typed, but supports type inference like Haskell:

fn main() {
let x = 7;
println!("value: {}", x);

}

• In dynamically typed languages, every operation
knows the types for which it is valid.

• Providing invalid arguments or operands will yield a
run-time error which may or may not be recoverable

• Such things can be anticipated and mitigated in
various ways, such as verifying type explicitly

12© Alex Ufkes, 2020, 2022

Dynamic Type Checking

factorial: n
| fac |
fac := 1.

n isInteger
ifTrue: [1 to: n do:

[:a | fac := fac*a.].
^fac

]
ifFalse: [

^'Bad input’
].

• In Java, the parameter would be
defined as int

• Compile error if arg isn’t int, or
can’t be implicitly cast as an int.

• Of course, polymorphism
in Java complicates this.

• Still statically typed.

Dynamic Type Checking

13© Alex Ufkes, 2020, 2022

Dynamic Type Checking…?

• Does Smalltalk have type errors in the strict sense?
• Different objects understand different messages.
• A “type error” occurs when an object doesn’t have a

method to handle a particular message.
• “Type” errors in Smalltalk are as a result of not finding

a method (DNU, Did Not Understand).
• Above, the error occurs because the Array class doesn’t

have an instance method for the message #+
• Smalltalk enthusiasts debate this.

#(1 2 3 4) + 18.2

14© Alex Ufkes, 2020, 2022

defmodule UserMath do

def fib(n) when not is_integer(n) or n < 0 do
:error

end
def fib(0), do: 0
def fib(1), do: 1
def fib(n), do: fib(n-2) + fib(n-1)

def fac(n) when not is_integer(n) or n < 0 do
:error

end
def fac(0), do: 1
def fac(n), do: n*fac(n-1)

end

Dynamic Type Checking

15© Alex Ufkes, 2020, 2022

Advantages? Disadvantages?

Static:
• Reliably find errors at compile time.
• Code will execute faster if types are

assumed to be correct at run time.
• Type-specific optimization can be

performed at compile time.
• I.e., integer arithmetic is typically

faster than floating point

Dynamic:
• Compilers run faster
• Interpreters can dynamically load

new code
o Smalltalk, MATLAB, iex

• Easier code reuse

Static VS Dynamic

16© Alex Ufkes, 2020, 2022

• There is much disagreement among programmers about just how
much of a problem type errors are in the grand scheme of things.

• Does the added cost of developing in a statically typed language
make sense if type-related bugs are but a tiny fraction?

• Of the type-related bugs that occur, what proportion of those
would have been solved by a type checker anyway?

• They aren’t perfect after all.

Advantages? Disadvantages?

Static VS Dynamic

17© Alex Ufkes, 2020, 2022

• At the end of the day, everything is zeros and ones.
o At the physical level there is no conception of type
o In fact, even 0 and 1 are abstractions for voltage levels…

• A machine instruction simply tells the CPU –
o “Perform this operation on the bits in that register”.

• The CPU moves and manipulates bits (electrical signals).
• There is no “type” in any sense of the word.

Untyped?

Machine Code:

© Alex Ufkes, 2020, 2022 18

Strong VS Weak Typing

19© Alex Ufkes, 2020, 2022

There is no universally accepted definition of what
constitutes strong or weak typing

Refers to how strict statically typed languages are at compile time

1974: “Whenever an object is passed from a calling function
to a called function, its type must be compatible with
the type declared in the called function."

Of strongly typed languages:

Compatible is open to interpretation. Is float compatible with
double? Integer with short integer?

Strong VS Weak (or Loose)

20© Alex Ufkes, 2020, 2022

Parameter lists, return types, etc.

1974: “Whenever an object is passed from a calling function
to a called function, its type must be compatible with
the type declared in the called function."

1977: “In a strongly typed language each data area will have a
distinct type and each process will state its communication
requirements in terms of these types."

Strong VS Weak (or Loose)

21

Refers to how strict statically typed languages are at compile time

© Alex Ufkes, 2020, 2022

To what degree does a statically typed language allow implicit type conversion?

• C is weakly typed.
• Happy to perform all manner of implicit

conversion without warning or error.

Strong VS Weak (or Loose)

22© Alex Ufkes, 2020, 2022

In C, pointer arithmetic can be used to completely bypass the type system:

• We’re using pointer arithmetic to read
the first 2 bytes of an int as a short.

• This can be done with any two types.
• We can read the rightmost 4 bytes of a

double as an int, etc.
• We can treat memory any way we want

Strong VS Weak (or Loose)

23© Alex Ufkes, 2020, 2022

C++ compilers will often give warnings, but programs still compile and run:

Strong VS Weak (or Loose)

24© Alex Ufkes, 2020, 2022

Java will throw compile errors when a loss of precision occurs:

• No implicit truncation from floating point to integer
• Floating point constants are double precision
• Need to indicate single precision explicitly

Strong VS Weak (or Loose)

25© Alex Ufkes, 2020, 2022

Java will throw compile errors when a loss of precision occurs:

Careful! Loss of precision does not only occur when going from
floating point type to integer type!

int is 32 bits two’s complement.
float is a 23-bit mantissa and an 8-bit exponent.

32-bit:

0 1 0 0 0 0 0 1 0 0 0 1 0

sign
bit Exponent (8 bits) Mantissa (23 bits)

26© Alex Ufkes, 2020, 2022

27© Alex Ufkes, 2020, 2022

• Integers are represented precisely. The integer 42 is exactly 42.
• The single-precision (32 bits) floating point value 0.1 is actually

0.100000001490116119384765625
• Double-precision (64 bit) floating point values are more accurate,

but still not perfect.

But why?
• Floating point values exist on an infinite continuum.
• Between any two floating point values are an

infinite number of additional floating-point values.
• Integers are discrete. Between any two integers are

a finite number of integers.

Imprecision of Floating Point

28© Alex Ufkes, 2020, 2022

Huh?
• Adding 0.1 three times accumulates

rounding/representation errors.
• Echoing 0.3 on its own hasn’t

accumulated those errors.
• Even still: 0.3 is not precise in binary!
• The interactive shell just doesn’t show

all the trailing digits.

29© Alex Ufkes, 2020, 2022

• A double-precision float is represented using 64 bits.
• A finite number of bits cannot represent an infinite number of

floating point values.

0100101110000010100010100001010100011010101011000110001110000011

• There are 2^64 ways to arrange 64 bits. A large number to be
sure, but certainly not infinite.

Imprecision of Floating Point

30© Alex Ufkes, 2020, 2022

But there are an infinite number of integers!
• 100% correct. We can’t represent every possible integer either.
• Rather, there is a range. A standard 32-bit integer has a range

of −2,147,483,648 to 2,147,483,647.
• Every integer within this range is represented precisely.
• Anything outside this range can’t be represented using 32 bits
• If we try, we overflow.

Infinite Integers?

31© Alex Ufkes, 2020, 2022

Overflow

32© Alex Ufkes, 2020, 2022

Haskell uses type classes to achieve a level of type polymorphism:

• Rather than assign concrete types at compile
time, assign a type class instead.

• If a function expects two args of type Ord, we
can pass in any of the concrete types that
implement Ord.

Strong VS Weak (or Loose)

© Alex Ufkes, 2020, 2022 33

© Alex Ufkes, 2020, 2022 34

No mixed expressions once we assign concrete types!

© Alex Ufkes, 2020, 2022 35

Strong VS Weak (or Loose)

• Rust achieves type polymorphism using Traits
• Directly inspired by type classes in Haskell
• Not inferred, must be indicated explictly.

Strong VS Weak (or Loose)

© Alex Ufkes, 2020, 2022 36

Variables, Identifiers,
Shadowing, Aliasing

© Alex Ufkes, 2020, 2022 37

• A variable is a location associated with a name (identifier)
• When two names are associated with the same memory

location, we call this aliasing.
o A variable has multiple names

• Shadowing: assign the same name to a different location in memory.
• Many languages allow this, but only when scope is different in some way.
• In Rust, we can “shadow” in the same scope.

© Alex Ufkes, 2020, 2022 38

Shadowing? Aliasing?

• In C/C++, overlapping scope is fine.
• We will simply access the variable that is

closest in scope to the statement doing
the accessing.

© Alex Ufkes, 2020, 2022 39

• Using pointers
• Both pointers refer to the same location.
• No problem using each pointer in the

same scope at the same time.

© Alex Ufkes, 2020, 2022 40

• In Java, within the same method, we can
only shadow if scopes do not overlap

• However, object instance variables can be
shadowed by method local variables

© Alex Ufkes, 2020, 2022 41

Problem?

• Parameter names shadow
instance variable names

• Not a compile error!
• Constructor is just pointlessly

assigning the parameters to
themselves.

© Alex Ufkes, 2020, 2022 42

this

this lets us refer to the object instance
variable rather than the parameter.

© Alex Ufkes, 2020, 2022 43

How about this?
if (x >= 0)
{

double r = Math.sqrt(x);
}
else
{

float r = 0;
}
int r;
r = 0;

Scopes do not
overlap!

© Alex Ufkes, 2020, 2022 44

• No problem
• Two references, same object
• Both are valid
• Check equality to verify

© Alex Ufkes, 2020, 2022 45

• In Rust, we can shadow in the same scope!
• This is similar to rebinding in Elixir
• But, the old value of x is lost. What about…

© Alex Ufkes, 2020, 2022 46

Shadowing over different scopes:
• Each scope preserves its own value
• Just like C/C++

© Alex Ufkes, 2020, 2022 47

Aliasing is very different in Rust.

If the type implements trait Copy, we get a copy:

• 7 is i32, i32 implements trait Copy
• Thus, y is a new variable whose

value is copied from x.
• Changing y does not affect x.

© Alex Ufkes, 2020, 2022 48

Aliasing is very different in Rust, as we saw.

If the type does not implement trait Copy,
we move ownership!

© Alex Ufkes, 2020, 2022 49

Functions,

Methods,

Procedures

© Alex Ufkes, 2020, 2022 50

Practically speaking, there is little difference.

Purists will tell you otherwise, so let's see how
they might be considered different

The difference comes mainly from the context
in which they are used.

© Alex Ufkes, 2020, 2022 51

A “function” refers to a sub-program that returns at least one value.
• Comes from the mathematical notion of a function.
• Calculates a return value based on its inputs.

A “procedure” refers to a sub-program that executes commands.
• It effectively acts via side effect.
• Thus, a procedure in a functional language makes as much sense

as a void function. That is, very little.

A function can be pure, a pure procedure would be useless by definition.

Functions VS Procedures

© Alex Ufkes, 2020, 2022 52

• A procedure returns nothing.
• For it to be pure, it can have no

side effects.
• With no return value, and no

side effects, a procedure is
completely pointless.

• Some languages (Pascal) treat functions and procedures as distinct
entities, which behave differently with respect to the language syntax.

• In C-like languages, there is no distinction. A procedure and a void
function are the same thing.

© Alex Ufkes, 2020, 2022 53

We can make a more meaningful distinction between functions and methods

• A method usually refers to a subroutine that is associated with an
object in the OO paradigm.

• Thus, the concept of a method doesn’t make sense in a language
without objects, such as C.

• Rust, on the other hand, does not implement classes
• However, it makes a distinction between methods and functions.
• Methods are implemented over types (structs, enums, etc.), and

carry in implicit reference parameter to that value.

Methods?

© Alex Ufkes, 2020, 2022 54

Many different strategies:
Call-by-value

• This is most common
• Values get copied into new variables
• Function can’t modify original argument
• Even when passing references (Java),

we get a copy of the reference.
• Though they will point to the same

object in memory.
• C, C++, Java, Smalltalk (technically)

Argument Passing

© Alex Ufkes, 2020, 2022 55

Many different strategies:
Call-by-value

Smalltalk (technically):
• Everything in Smalltalk is an object, thus

we’re always passing references.
• It’s hard to think of this as pass-by-value.
• We’re still creating a copy of a reference,

it’s still the same object in memory.
• Call-by-reference is different from passing

a reference by value.

Argument Passing

© Alex Ufkes, 2020, 2022 56

Many different strategies:
Call-by-value

Call-by-reference

• Many languages support call-by-reference in
some capacity

• Fortran II defaults to pass-by-reference.
Modifying parameters affects original argument

• C++ defaults to call by value, but offers special
syntax to pass by reference (&)

• C can simulate call-by-reference using pointers.
• Rust offers call by reference, but defaults to

immutable. Special syntax allows us to pass
mutable references.

Argument Passing

© Alex Ufkes, 2020, 2022 57

Pass by Reference VS Passing a Reference by Value

Use the copied reference to
modify the original object.

Swap which object each
reference points to….?

• x1,y1 should be 0,0?
• x2,y2 should be 10,10?

© Alex Ufkes, 2020, 2022 58

© Alex Ufkes, 2020, 2022 59

Many different strategies:
Call-by-value

Call-by-reference
Call-by-name

• Arguments are not evaluated until function
is called.

• Rather, they are substituted directly into
the body of the function.

• Think #define macro style in C++
• If an argument is not used in the function

body, it is never actually evaluated.
• Early example was ALGOL 60
• Consider:

Parameter Passing

© Alex Ufkes, 2020, 2022 60

If this was using call-by-name:
• Only the first argument is evaluated
• The expression 1+2+3+4+5 gets

substituted into the function body.
• Downside? We might evaluate it more

than once if it’s used more than once.
• Upside? Unused arguments are never

evaluated.
• Argument might only be used in one

branch of a selection structure, for
example.

• One way to do lazy evaluation!

© Alex Ufkes, 2020, 2022 61

Many different strategies:
Call-by-value

Call-by-reference
Call-by-name
Call-by-need

Etc.

• In call-by-name, an expression might be
evaluated multiple times.

• Call by need is just like call by name,
except when an argument is evaluated
once, that result is shared if the
argument is used again.

• Requires more overhead behind the
scenes.

Parameter Passing

© Alex Ufkes, 2020, 2022 62

© Alex Ufkes, 2020, 2022 63

Late VS Early Binding

Dynamic/late binding VS static/early binding

Early binding
• Method to be called is found at

compile time
• Method not found = compile error
• More efficient at runtime

Late binding
• Method is looked up at runtime
• Often as simple is searching name
• Symbol comparison in Smalltalk
• Method not found = runtime error
• Costlier at runtime

Polymorphism is implemented through dynamic binding

Double dispatch is implemented through dynamic binding

© Alex Ufkes, 2020, 2022 64

Late VS Early Binding

Dynamic/late binding VS static/early binding

According to Kay, the essential
ingredients of OOP are:

1. Message passing
2. Encapsulation
3. Dynamic binding

“OOP to me means only messaging, local retention and protection and
hiding of state-process, and extreme late-binding of all things..”

© Alex Ufkes, 2020, 2022 65

Dynamic Binding

The difference between dynamic and static binding is
easiest to appreciate through an example.

Consider…

66© Alex Ufkes, 2020, 2022

What’s going on here?
• BankAccount defines a deposit() method.
• Thus, subclasses of BankAccount do also.
• Could be overridden, could be inherited.
• However! Our atm() method can only

invoke methods that exist in BankAccount.
• RRSP might define a new method not

present in BankAccount.
• This could not be invoked from atm()

This gets confusing. Always remember the kind-of relationship!
• An RRSP is a BankAccount, so any method designed for a

BankAccount will/should also work on an RRSP.
• A BankAccount is not necessarily an RRSP. A method whose

parameter is an RRSP will NOT accept a BankAccount.
67© Alex Ufkes, 2020, 2022

double balance
void deposit()

Etc…RRSP acc

BankAccount b1

RRSP

This is an implicit cast. We could also write:
BankAccount b1 = (BankAccount) acc;

68

Upcasting

© Alex Ufkes, 2020, 2022

double balance
void deposit()

Etc…RRSP acc

BankAccount b1

RRSP

Upcasting: A sub-class object can be treated as an instance of its super-class

Why does this work?
• An RRSP can do everything a

BankAccount can do
• If a BankAccount reference points to

an RRSP object, there’s no danger

Liskov Substitution Principle:
“Functions that use pointers or references
to base classes must be able to use objects
of derived classes without knowing it”

Upcasting

69© Alex Ufkes, 2020, 2022

double balance
void deposit()

Etc…RRSP acc

BankAccount b1

RRSP

RRSP acc2

We do have to explicitly cast here. We
know that b1 references an RRSP object,

but the compiler doesn’t.
70

Downcasting?

© Alex Ufkes, 2020, 2022

RRSP r

BankAccount b

double balance
void deposit()

Etc…

BankAccount

Problem….?

71

Downcasting?

© Alex Ufkes, 2020, 2022

• Java accepts that we’ve cast
reference b as an RRSP.

• It’s not until runtime that Java
follows the reference to the object
and detects the problem.

• No other choice: the object doesn’t
actually exist at compile time.

72

Downcasting?

© Alex Ufkes, 2020, 2022

Moving on…

…to imperative.

Rust is an imperative language. However, we’ll see many cool features
that remind us of the functional languages we’ve seen.

73© Alex Ufkes, 2020, 2022

74© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 75

