
CPS506 - Comparative Programming Languages
Implementation

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason

Why Managed Languages?

productivity - focus on the problem
expressive languages - functional, OO, declarative
safety - hard to get low-level details right

https://creativecommons.org/licenses/by-nc-sa/4.0/


What Managed Languages?

memory management - usually garbage collected
higher-level abstractions
often interpreted/JIT
often VM - JavaVM and CLR are most well known

Which Managed Languages?

OO - Smalltalk, Java, Python, Ruby, C#, Scala, Javascript
functional - Elixir/Erlang, Haskell, SML, Ocaml,
Racket/Scheme/LISP/Clojure
array - APL/J, R, MATLAB, Maple
logic/declarative - Prolog
procedural/systems - Go, Nim, Lua
easier question - what’s not? - C, C++, Rust, Zig, Odin, Jai



Modern Execution Structure?

most machine architecture: PC, SP, other registers, memory

Dynamically Typed Languages

values are typed
some form of polymorphism - parametric or OO
means everything must be same size - ideally a register
could heap-allocate everything - really bad for integers
otherwise, need to tag values with type
some hardware has had tags - SPARC, B7700



Conventional tag

modern architectures are byte-addressable
heap objects will always be aligned - say 8-byte boundaries
can put tag in low bits, have integers shifted
keep floating point values boxed

IEEE-FP tag

modern processors have 64-bit integers, 64-bit pointers, and
64-bit IEEE floats
IEEE floats have many Nan values - exp all 1s - 253 Nan values

several ways to do NaN tagging/encoding
you can choose integers, pointers, or doubles to be naturally
encoded
all the others be encoded with some shifting/adding
while integers and pointers are probably more common in most
Smalltalk images
leaving doubles as naturally encoded means that FPU, vector
instructions and/or GPUs can act directly on memory



IEEE-FP tag...

AST Smalltalk uses the following encoding based on the Sign+Exponent and Fraction bits:
S+E F F F Type
0000 0000 0000 0000 double +0
0000-7FEF xxxx xxxx xxxx double (positive)
7FF0 0000 0000 0000 +inf
7FF0-F xxxx xxxx xxxx NaN (unused)
8000 0000 0000 0000 double -0
8000-FFEF xxxx xxxx xxxx double (negative)
FFF0 0000 0000 0000 -inf
FFF2-F xxxx xxxx xxxt tagged literals
FFF2/3 xxxx xxxx xxxx heap object
FFF4 0000 0001 0000 False
FFF6 0000 0010 0001 True
FFF8 1000 0000 0000 UndefinedObject
FFFA/B xxxx xxxx xxxx Symbol
FFFC/D xxxx xxxx xxxx Character
FFFE/F xxxx xxxx xxxx SmallInteger

Heaps

sequential allocation - very cheap but run out of space eventually
can work if we can compact out the freed memory eventually

block allocation - data structure to remember freed memory
many algorithms
external fragmentation - free space that can’t be allocated
internal fragmentation - allocations larger than the object

page allocation - “pages” of uniform types
external fragmentation - just at end of “page”
internal fragmentation - should be none apart from alignment



Heap allocation

manual allocation - explicit malloc/free - very error prone
reference counting - problem with cyclic structures, cascading-free
non-moving collection
compacting collector - enables sequential allocation
copying collector - enables sequential allocation
generational collection

Mark+Sweep Garbage Collection

2 phases
mark phase - go from roots to find all accessible data
go through all object putting inaccessible into “free list”
can be written to be mostly parallel
can be conservative
does not support sequential allocation
significant fragmentation can exist
allocation can be slow - finding appropriate free space



Compacting Garbage Collection

similar to mark+sweep with extra overhead to manage compacting
sequential collector
consolidate free space to prevent fragmentation and support
sequential allocation

Copying Garbage Collection

consolidate free space to prevent fragmentation and support
sequential allocation
sequential collector
from roots collect all live objects into new area
leaving “forwarding pointers” behind
make the new space the current space
only touches live data



Generational Collection

can be best of all worlds
per-thread copying collector - nursery + intermediate
shared mark+sweep collector - can be parallel


