C/CPS 506

Comparative Programming Languages
Prof. Alex Ufkes

Topic 8: Side effects and actions in Haskell
University

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit

permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Course Administration

RN Frersen CCPS506 - Comparative Programming La... 88 & & [\ Nexander Utkes §O3

Content Grades Assessment ~» Communication ~» Resources » Classlist Course Admin

 Don’t forget about the assignments!

© Alex Ufkes, 2020, 2022 3

© Alex Ufkes, 2020, 2022

Let’s Get Started!

© Alex Ufkes, 2020, 2022

Previously

(3.) WinGHCi
File Edit Actions Tools Help

Ty 0BG BN -

Prelude> :1i Eq
class Eq a where
==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
{-# MINIMAL (==) | (/=) #-}
-- Defined in ‘GHC.Classes’

instance Eq a => Eq [a] -- Defined in ‘GHC.Classes’
instance Eq Word -- Defined in ‘GHC.Classes’
instance Eq Ordering -- Defined in ‘GHC.Classes’
instance Eq Int -- Defined in ‘GHC.Classes’
instance Eq Float -- Defined in ‘GHC.Classes’
instance Eq Double -- Defined in ‘GHC.Classes’
instance Eq Char -- Defined in ‘GHC.Classes’
instance Eq Bool -- Defined in ‘GHC.Classes’

© Alex Ufkes, 2020, 2022

Previously

(3.) WinGHCi - O X
File Edit Actions Tecls Help

S ¥ O0EEEEN-d

*Test> :1 Num

class Num a where
(+) :: a ->a ->a
(-) :: a->a->a

(*) :: a->a ->a

negate :: a -> a

abs :: a -> a

sighum :: a -> a
fromInteger :: Integer -> a
{-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}

L]
==L ’ +« INL

£

inetanca Neafal NMim D+ —-- Nafinad at+ Tact he+7:+:11

N

© Alex Ufkes, 2020, 2022

(3. WinGHCi - O Py

File Edit Actions Tecls Help

SN ODIEUE BN -

instance Ord Double -- Defined in

instance Ord Ordering -- Defined in ‘GHC.Classes’

instance Ord Int -- Defined in ‘GHC.Classes’
‘GHC.Classes’
‘GHC.Classes’

instance Ord Float -- Defined in

Num:

© Alex Ufkes, 2020, 2022

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, O

(3] WinGHCi - O X

File Edit Actions Tecls Help

S ¥l ODEE EES

k4

-- Defined in €‘GHC.Num’
instance Num Word -- Defined in ¢‘GHC.Num’
instance Num Integer -- Defined in ¢‘GHC.Num’
instance Int -- Defined in €‘GHC.Num’
instance Float -- Defined in ‘GHC.Float’
‘GHC.Float’

Double -- Defined in

instance

Pure Code,
Monads,
Actions

© Alex Ufkes, 2020, 2022

N
- Every function is pure

}

Pure Functions: Functions that have no side effects.

'

A function can be said to have a side effect if it has an observable
interaction with the outside world aside from returning a value.

'

* Modify global variable
* Raise an exception
* Write data to display or file

© Alex Ufkes, 2020, 2022

10

Write to Display

This was the very first thing we saw!

[3.) WinGHCi
File Edit Actions Tools

Sy OBl BN

Help

7

Prelude>\

© Alex Ufkes, 2[)20, 2022

Prelude> putStrLn "Hello World!"
Hello World!

11

Haskell and 1I/O

* Haskell separates pure functions from computations where
side effects must be considered

* Encodes side effect-producing functions with a specific type.

 We've already seen an example of this:

(3. WinGHCi - O X
File Edit Actions Toecls Help

Syt ODEEENH

Prelude> putStrLn "Hello World!"™

L] L] [) 1

Prelude> :t putStrLn
putStrLn :: String -> I0 ()

© Alex Ufkes, 2020, 2022

Haskell and 1I/O

(3.) WinGHCi — O ¥
File Edit Actions Tools Help

7y b 0OMDEE KN -

Prelude> putStrLn "Hello World!"™
Hello World!

Prelude> :t putStrLn
putStrLn :: String -

Prelude>

© Alex Ufkes, 2020, 2022

The actual act of printing to the screen

does not occur as a result of a function call.

Printing to the screen is an action.
Actions are values, they have a type!
putStrLn accepts a String argument.
What it returns is an action of type I0()

13

Haskell and 1I/O

(3.) WinGHCi — O ¥
File Edit Actions Tools Help

R [EP=P

Speaking precisely:

Prelude> putStrLn "Hello World!"™
Hello World!

Prelude> :t putStrLn

putStrLn :: String -> I0 ()
Prelude>

© Alex Ufkes, 2020, 2022

 putStrLnis a function (no side effects!)
o Takes a String as an input argument
o Returns an action, whose type is I0()
 When the I0() action is executed, it
returns ().
* This can be read as an empty tuple.
* The action, when executed, produces a
side effect.
 The putStrLn function, strictly speaking,
does not.

14

Haskell and 1I/O

S ¥bll D08 E EES

(3] WinGHCi — O

ks

File Edit Actions JTools Help

© Alex Ufkes, 2020, 2029

Prelude> X
Prelude> :t x
X :: I0 ()

putStrLn("Hello")

Prelude> x Execute the action
Hello

Prelude>

e Actions are values, just like strings and numbers.

* They are completely inert —they do not affect the
real world until executed.

15

Haskell and 1I/O

(3.) WinGHCi -
File Edit Actions Tools Help

S ¥ ODEE BN H

O

X

Prelude> getlLine

Hello

"Hello"

Prelude> :t.getline
getlLine :tring —
Prelude>

© Alex Ufkes, 2020, 2022

We can also look at getLine
getlLine returns an IO action also
It returns a String (10 String vs 1O ())
Ordinary Haskell evaluation doesn’t
cause actions to be executed.

GHCi will execute actions for us, as
seen previously.

16

Just remember: actions are not functions.

Functions are pure. Actions (specifically 10 actions),
when executed are not.

Functions are evaluated, actions are executed or run

Actions are values. Actions can be returned by functions
or passed as arguments.

Actions have a type. We’ve seen one so far, 10

© Alex Ufkes, 2020, 2022

17

Actions can only be executed from within other actions.

A compiled Haskell program begins by executing a
single action —main: :I0()

https://wiki.haskell.org/Introduction_to Haskell 10/Actions

© Alex Ufkes, 2020, 2022

18

main: :I0()

Recall: Every compiled Haskell program must have a main function:

(3.) WinGHCi
File Edit Acticns Teocls Help

S ¥l 00EE &N

K

*Main> :reload
Ok, one module loaded.
*Main> main
Hello World!
*Main> :t main
main :: IO ()
*Main> |

© Alex Ufkes, 2020, 2022

A Haskell program, by itself, is a single action that
is executed when we run the program.

er ChHaskellCodetMain.hs - Notepad++ —
File Edit 5Search View Encoding Language Settings Tools Macre Run Plugins Wi

cEHEHER RS s Mk oty @ |BE|= 1 El
[Tesths (3| [Haskelilisths £ 5 Manhs 3 |

1 main = do
2
3 putStrLn "Hello World!"

The main function is a single action
This action is executed when the program is run.

Windows (CRLF) UTF-8

19

Staying Grounded

* A Haskell program begins with the execution of a single action (main: :I0())
o Functions that return actions are often incorrectly referred to as actions.

* From within this action, any number of additional actions can be executed

e Pure functions can also be called/evaluated from within actions!

 However — actions cannot be executed from within pure functions.

* If we try, Haskell will infer the type of the function as an action.

© Alex Ufkes, 2020, 2022

20

Staying Grounded

© Alex Ufkes, 2020, 2022

An action can be thought of as a recipe
This recipe (in the case of 10) is a list of instructions that
affect the world outside our program.

The act of creating this recipe does not have side effects.

The recipe can be the output of a pure function.
Same inputs to the function, same recipe.

21

O Actions

We can use the <- operator to execute:

(3] WinGHCi
File Edit Actions Tools Help

— O X

Syl 0DBdEEN -

Prelude> x = getlLine
Prelude> x <- getlLine
Alex

Prelude> Xx

"Alex"

Prelude>

© Alex Uflges, 2020, 2022

The <- operator is used to pull out the
result from executing an 10 action.

We can then bind a name to it.
The return value of getLine is an action.
Executing that action returns a String.

22

O Actions

(3] WinGHC
File Edit Actions Teools Help

SRR TN 1SIZ =D 7

Prelude> x = putStrLn "Hello"
Prelude> do X

Hello

Prelude> x <- putStrLn "Hello"
Hello

Prelude> :t X

X :: ()

Prelude>

© Alex Ufkes, 2020, 222

23

Combining Actions

We can do this using the do keyword:

(3.) WinGHCi
File Edit Actions Tools Help

S0 0DNEUE BN -

O

X

*Main> :reload
Ok, one module loaded.
*Main> mailn
Hello
World!
*Main>

Q{ ChHaskellCodeiMain.hs - Motepad++ —
File Edit Search View Encoding Language Settings Tools Macre Run Plugins Wine

cEHHEERLRES s HD ey @x|BE|S1/EE
B Testhe 3 EI‘H‘Iain.hsEﬂl

1 main = do

putStrLn "Hello"
putStrLn "World!"

i B~ w M

When using the do keyword, we can

execute one action per line.

length:57 line Ln: 6 Col:2 Sel:0|0 Windows (CRLF) UTF-8

© Alex Ufkes, 2020, 2022

24

Combining Actions

do is syntactic sugar for >>

el C:\HaskellCode\Main.hs - Notepad-++ — O *
File Edit Search View Encoding Language Settings Toels Macre Run
Plugins Window ¥ X
o & sl @ |9y @x| BE|= >
Bl Tesths (3 I'_‘]I'l-"lain.hsﬂl

1 main =

2

3 putStrLn "Hello"™ >>

4 putStrLn "World!"

5

6 |

Ln:6 Col:2 Sel:0|0 Windows (CR LF) UTF-2

IMS

© Alex Ufkes, 2020, 2022

>> says execute this, then this.

If the first action produces a result,
it is discarded.

What if we want to use the result?

Use the >>= operator to pipe the result
into the next action.

25

Combining Actions

do is syntactic sugar for >>

E‘;':Tf“‘f”':“,"'”‘ffi”'“s;”“f_‘”d*f T * >>says execute this, then this.
Plugy | C\Haskel CodeMainkh - Notepad- | - 2 | e |fthe first action produces a result,
o [| File Edit Search View Enceding Language Settings Tools Macre Run L .
7o Plugins Window 7 | o X itis dlscarded.
e = sl & | 2c|iwp ax(EBE|= .
S B o | * What if we want to use the result?
; main = * Use the >>= operator to pipe the result
3 putStrin "Hello" >> into the next action.
4 putStrLn "World!™ >> * Here, we grab a string using getlLine,
5 . . .
. and display it using putStrlLn
6 getLine >>= putStriLn . play §P]
v « getlLine returns an action that
me| 8 produces a string
Ln:6 Col:2 Sel:0]0 Windows (CRLF) _ UTF-¢ s * putStrLn takes string as an argument.

© Alex Ufkes, 2020, 2022 26

| C\HaskellCode\Main.hs - Notepad++ — O X
File Edit 5earch View Encoding Language DSettings Tools Macrp Run
Plugins Window 7 (3] WinGHCi — O >
o EHE s & L WmiE| 2 8| % =]fe Edt Adions Tools Help
B e S¥ul DO8dEEa
1 main = -
5 *Main> :reload
3 putStrLn "Hello" >> [1 “f_ll Cnm?lllng Main
4 putStrLn "World!™ >> (Main.hs, interpreted)
5 Ok, one module loaded.
5 getlLine >>= putStrlLn *Main> main
7 Hello
8 | World!
Ln:8 Col:2 Sel:0|0 Windows (CRLF) UTF-3 Alex
Alex
*Main>
.

© Alex Ufkes, 2020, 2022

27

More Complicated

— | X

Q{' ChHaskellCode\Main.hs - Motepad++
File Edit Search View Encoding Language 5ettings Tocls Macre Run Plugins Window 7 [E]WinGHCi

cHHEE LA i MEk|loc(y 2% |EE(S1EFEDS® (O E Y WE|| G wbi Adons Toos Help

BT Evanns 3| E‘?\ ¥ B E ‘E‘ m] 7| ‘E}] |:

1 main = _
2 putStrLn "What is your name?" *Main> :reload
3 >> getlLine Ok, one module loaded.
4 >>= \name -> putStrLn ("Hello, " ++ name ++ "!") *Main> main
6| Alex

* Lambda function accepting 1 arg, name Hello, Alex!

1 *Main>

UTF-2

 Received directly from the getLine above

© Alex Ufkes, 2020, 2022 28

Up until now, we’ve only really seen how to evaluate
expressions (and execute actions, though we didn’t know
that’s what we were doing) in GHCI.

Now we’re seeing how to write, compile, and execute a
complete Haskell program containing actions.

© Alex Ufkes, 2020, 2022

29

[af C\HaskellCode\Main.hs - Notepad++ — O >
File Edit Search View Encoding Language Settings Tecols Macre Run Pluging Window 7 X
e &= s Iz & = iR % | x x| L = EEEEE®| - A5
| Test hs | Main hs _'Il

1 main =

2 putStrLn "What is your name?"

3 >> getlLine

4 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

5

6 |

BN Command Prompt

AUV LIL C - \HaskellCode>ghc -0 a Main.hs

© Alex Ufkes, 2020, 2022

[1 of 1] Compiling Main
Linking a.exe

C:\HaskellCode>a
What is your name?
Alex

Hello, Alex!

C:\HaskellCode>_

(Main.hs, Main.o)

30

Actions & Functions

BN Command Prompt —

|=] ChHaskellCode\Main.hs - Motepad++

File Edit Search View Encoding Language Settings Tools Macre Run Plugins

C:\HaskellCode>ghc -0 a Main.hs

L+) = -] Lﬂ] |‘_-‘_| =] e L:fﬁ;' g = | [=
| | Main hs E3 l
: \HaskellCode>a
i Enter a number:
main = do

100

putStrLn "Enter a number:"”
numStr <- getlLine

let num = (read numStr::Double)
putStrLn (show (sqrt num))

10.0

C:\HaskellCode>

 Use <- when binding the result of executing an action

£

« Use let and = when binding the result of an expression

length: 132 lines: 9

Problem?

We are executing actions in main
Its return type must be an action.

The value of a “do” block is the value
of the last expression evaluated

(3] WinGHCi - O
File Edit Actions Tools Help

Sl Qe E BN -

e D:\GoogleDrive\Teaching - Ryerson'(C)CPS 506\Resources\Code\Haskell\main.hs - ..
File Edit Search View Encoding Language Settings Tools Macro Run Pluging
6 & sl B| Bl (M B % % |BE|=1
Hmanhs & |

1

2 main = do

3 putStrLn "Enter a number:"

4 numStr <- getlLine

5 let num = (read numStr::Double)

5 num

7 --putStrLn (show (sqgrt num))

8

9
length: 138 lirLn:9 Col:2 5Sel:0|0 Windows (CRLF) UTF-2

© Alex Ufkes, 2020, 2022

Prelude> :reload
main.hs:6:2: error:
e Couldn't match expected type ‘IO b’
with actual type ‘Double’
e In a stmt of a 'do'

In the expression:
P T S o S

block: num

L P L (——— | |

32

return ()

[af C\HaskellCode\Main.hs - Notepad++ — O *
File Edit Search View Encoding Language Settings Tools Macre Run Plugins [E]WinGHCi
jEﬁ @@@|*@m|§c|ﬂ%|% -%||_-=£|:=£|5_,11 1 File Edit Actions Tools Help
B Tesths £3 = Mainhs E3 ~ : - — . o —m _
— e Sy 00 0NEEEEa
2 main = do *Main> :reload
3 putStrLn "Enter a number:” Ok, one module loaded.
4 numStr <- getline *Main>
5 let num = (read numStr::Double)
6 let sq = sgqrt num
; return () Return is NOT a keyword; it is a function.
- It does not break control flow, or “return”
10 from a function
E It takes a value and creates an action that
produces that value when executed.
< . . y
In this case, an action that produces ())
le 141 i 9 Sel:0|0

33

Monads & return ()

*Test}‘

*Test> :t (+)
(+#) :: Num a =>a -> a -> a
*Test>

Here we get a clue about monads
Monad is actually a type class

(3. WinGHCi — O b4 (3. WinGHCi — O b4
File Edit Actions Tools Help File Edit Actions Tools Help

Sy DEWEEEN|E Sy 00U ENH
*Test> :t return *Test> :t return

return :: Monad m => a -> m a return :: Monad m => a -> m a

© Alex Ufkes, 2020, 2022

This syntax resembles other type
classes we’ve seen.

(3.) WinGHCi - O
File Edit Actions Tools Help

S8 B0 DDEEEES 4

GHCi, version 8.4.2: http://www.haskell.org/ghc/ :? for help
Prelude)
newtype IO a
= GHC.Types.IO (GHC.Prim.State# GHC.Prim.ReallWorld
-> (# GHC.Prim.State# GHC.Prim.RealWorld, a #))
-- Defined in ‘GHC.Types’

instance Applicative IO -- Defined in ‘GHC.Base’
instance Functor IO -- Defined in ‘GHC.Base’
instance Monad I0 -- Defined in ‘GHC.Base’
instance Monoid a => Monoid (IO a) -- Defined in ‘GHC.Base’
instance Semigroup a => Semigroup (IO a) -- Defined in ‘GHC.Base’
Prelude)‘

© Alex Ufkes, 2020, 2022

35

Monads

Monad is a typeclass:

(3.) WinGHCi - O X

File Edit Actions Tecls Help
7

S ¥ 0DEEEEs
Prelude> :i1i Monad @ .

© Al

class Applicative m => Monad (m ::

(>>=) ::

ma->(a->mb) ->mb

* -> *¥) where

We've seen these:

(>>) ::ma->mb ->mb
return :: a -> m a

{-# MINIMAL (>>=) #-}
-- D€ nec i HL . base”’
instance Monad (Either e) -- Defined in

instance Monad [] -- Defined in ‘GHC.Base’

[I 1, [P L 7 PR

Made e & m C~11 P =)

>>= passes the result on the left

into the function on the right.
>> |gnores the result on the left
return wraps data in a monad

£

Lflecac 2020 2099

N

EXUTKES, ZUZU, ZUZZ

36

Monad Jargon

“Monadic” Pertaining to monads. A monadic type is an
instance of type class Monad (IO, for example)

“type xxx is a XXX is an instance of type class Monad. xxx
Monad” implements >>, >>=, and return
“action” Another name for a monadic value

By the way:

e It turns out that Monads are good for
things other than side effect-producing |O.
 We'll see an example coming up.

© Alex Ufkes, 2020, 2022

37

>>=VS >>

Where the > = Chains actions together. Result of left side
magic happens is given as input to the right side.

Chains actions together. Ignore
>> .
result of left side.

a>b VS a>=\ ->0b

>> can be defined in terms of >>=

© Alex Ufkes, 2020, 2022

38

Non-main

Example

er CHaskellCode\Test.hs - Motepad++ —

o =5 ca--'é[g” Q|@ |lﬂbﬂ| 2 $|'—'.‘I.'i_!.|i*‘ il
[=] Tesths 4 IE Main hs _Jl

1 module Test where

2

3 positive = do

4 putStr "Enter a number:
5 num <- getline
6
7

(read num::Double) < ©

File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window 7 #

Function that reads in a number
Returns true if < zero, false otherwise
Problem: We’re creating 10 actions

The return type cannot be Boolean
It must be |0 something

length .
© AIexU%hes, 2020, Zor2the expression:

Ars miIFSd+Ernr "Endar A mArmmhbioan s

(3.) WinGHCi — O ¥
File Edit Acticns Tocls Help
175 s 0 00 E BN -3
1Test.hs:7:3: error:
1 e Couldn't match expected type ‘IO b’ with actual type ¢‘Bool’
< e In a stmt of a '"do' block: (read num :: Double) < ©

39

Non-main Example

What if we still want to get a Boolean back?

Q{' C\HaskellCode\Test.hs - Motepad++

File Edit 5earch View Encoding Language Settings Tools

cBDHER A I/ MRk oe |y x| EBE|=1F

[= Tesths E4 |E Main hs]l

Macre FRun Plugins

— |

(3.) WinGHCi - O X
= File Edit Actions Tocols Help

S 00U BN |9

1 module Test where
2

positive = do
putStr "Enter a number:
num <- getlLine

3
4
5
6 return ((read num::Double) < 9)
7
8
9

10
11

£

*Test> :t positive
positive :: IO Bool

*Test>[x <- positive
Enter a number: 8

the action using <-

*Test> X

False The return type of

*Test> :t X positive is an 10 action.

: t: Bool When executed, that
Test>

action produces a Bool

Windows (CRLF) UTF-&

Pegth: 13 dins Lo @20 : 2 (39210

M5 |

Extract the value from

40

Calling Pure Code

Q’ ChHaskellCode\ Main.hs - Notepad+
File Edit Search VYiew Encoding

We can st|II caII pure functions from actions:

s B sl @ ~) || % = =0 N | =]l () £ [2 Command Promp
| Test hs | Main hs E3 l
1 findBigger x y = if x > y then x else y BINC : \HaskellCode>ghc -0 a Main.hs
2 [1 of 1] Compiling Main
3 mailn = do Linking a.exe ...
4 putStrLn "Enter first number:"
5 nStr <- getlLine C:\HaskellCode>a
& let numl = (read nStr::Double) Enter first number:
7 putStrLn "Enter second number:™ 4.5
8 nStr <- getlLine Enter second number:
S let num2 = (read nStr::Double) 7.9
10 let big = findBigger numl num2 Larger: 7.9
11 putStrLn ("Larger: " ++ (show big))
12 C:\HaskellCode>_
13 | .
lj L I: 90| 0 Windows (CRLF) UTF-8 INS 41

© Al

Best Practice

Separate pure code into its own functions:

Q’f’ Ch\HaskellCode\Test.hs - Notepad++

File Edit 5earch View Encoding Language Settings Tools Macre Run Plugins Winddg

cHEHERERLE smb|loe g ax|BE| =1 EE

[=] Tesths 4 |E Main hs dl

(3.) WinGHCi
File Edit Actions Tecls Help

S ¥ 08 W EE

ks

1 module Test where

testPos numString = do
let x = read numString::Double
if x < © then False else True

positive = do

putStr "Enter a number:
num <- getlLine

return (testPos num)

WO 00~ Ov Ul =~ w N

=
]

11

£

Pure!

Action

*Test> x <- positive
Enter a number: -8

*Test> X

False

*Test> :t positive
positive :: IO Bool
*Test> :t testPos

testPos :: String -> Bool
*Test>

length: 2408 lir Ln:13 Col:2 Sel: 0|0 Windows (CRLF) UTF-8

42

When looking at main, Haskell looks rather imperative...

Even at this point, however, Haskell sets itself apart
from imperative languages.

It creates a separate type of programming construct for operations
that produce side effects

We can always be sure of which parts of the code will alter the state
of the world, and which parts won’t.

Imperative languages do no such thing, and make no guarantees
whatsoever regarding function purity

© Alex Ufkes, 2020, 2022

43

Monads

“The essence of monad is thus separation of composition
timeline from the composed computation's execution timeline, as
well as the ability of computation to implicitly carry extra data”

“This lends monads to supplementing pure calculations with features
like 1/0, common environment, updatable state, etc.”

Not just for 1/O! Not just for side effects!

© Alex Ufkes, 2020, 2022

44

Maybe Monad

Monads were originally introduced for IO operations

It turns out, as a construct, they are useful for modelling
other things as well!

For example: exception handling, non-determinism, etc.

© Alex Ufkes, 2020, 2022

45

Maybe Monad

Represents a computation that might not produce a result
Computations that might “go wrong”
For example — calling tail with a list that might be empty

We can use Maybe to create a safety wrapper for functions
that might fail, depending on input.

© Alex Ufkes, 2020, 2022

46

Maybe Monad

(A WinGHCi
File Edit Actions Tools Help
Sy b0 0DBEENd Maybe:
* : Custom data type
data Maybe a = Nothing | Just a -- De Instance of Monad
-- ings”1n

instance Eq a => Eq (Maybe a Defined Maybe a can be
instance Functor Maybe - sPefined in ‘GH Nothj_ng’ or Just a
instance Monad Maybe % Defined in ‘GHC.Ue
instance Semigroup a => Monoid (Maybe a) -- Defined in ‘GHC.Ba
se’
instance Ord a => Ord (Maybe a) -- Defined in €‘GHC.Base’
instance Semigroup a => Semigroup (Maybe a)

MNalfswmad sw;m (AU Daaa) ¥

/

© Alex Ufkes, 2020, 2022

We’'ve seen this before...

Qf’ CHaskellCodeh Test.hs - Motepad++ — [] .4
File Edit Search View Encoding Language Settings Toels Macre Run Plugins
e T e e s - e =gl Ptcantake the value Pt3 Float
ERTT L Float Float, or Pt2 Float Float
1 module Test where
’ M
aybe can take the value
4 | Pt2 Float Float Nothing or Just a
5
6 ptX (Pt3 xy z) = X (0 WinGHG:
7 pty (Pt3 xy z) =y File Edit Actions Tools Help
5 pt7 (PE3 _ - . . — ——
o PrBxyn sz Yol ODEEEE -
10 *T e + 3 Mavhe
11 data Maybe a = Nothing | Just a -- Defined in ‘GHC.B:
12 instance Applicative Maybe -- Defined in ‘GHC.Base’
A3 instance Eq a => Eq (Maybe a) -- Defined in ‘GHC.Base’
length :1,358 _lines : 78 Ln:12 Col:2 Sel:0]0 instance Functor Maybe -- Defined in ‘GHC.Base’
© Alex Ufkes, 2020, 2022 48

instance Monad Maybe -- Defined in ‘GHC.Base’

] - k. P i

Maybe Monad

[of C:\HaskellCode\Test.hs - Notepad++ — O >
File Edit Search View Encoding Language Settings Teools Macre Run Plugins Window 7 X

cHEHERLA /i MDh 2y ax BE|STEEER
B Mainhs £E3 [Tesths E1 |

1 module Test where Define safe functions for head and tail.
2 o Using guards - |
3 safeTail x Instead of faili tv list
4 | (length x > @) = Just (tail x) nstead ot falling c.)n empty 11515,
5 | otherwise = Nothing evaluate to Nothing.
? fehend If a tail or head can be found, evaluate
sarterned X .
5 | (length x > @) = Just (head x) to Just head Xx,orJust tail x
9 | otherwise = Nothing Just head? Just tail?
10
11
12
- 12 : v
Windows (CR LF) UTF-8

Maybe Monad

(3.) WinGHCi
File Edit Actions Tools Help

Sy ol QB E SN -

*Test> x = safeHead [1, 2, 3, 4]
*Test> x

Just 1

*Test> :t x

X :: Num a => Maybe a

*Test> :t safeHead

safeHead :: [a] -> Maybe a
*Test>

When we call safeHead on a non-
empty list, we don’t get the head.
We get Just head

This is the head of the list
wrapped in a Maybe monad.
Remember that Maybe is a type,
just like our custom Pt type

© Alex Ufkes, 2020, 2022

50

Maybe Monad

Q’f’ C\HaskellCodel\Test.hs - Motepad++ — O x
File Edit Search View Encoding Language Settings Tools Macroe Run Plugins Wi (A WinGHCi — O x
s EE L EE WD 2e || 2 2 EE| =1 EFe Edt Adions Tools Help -
S S S ¥R ODEEENH
1 module Test where » Rvotedis
5 *Test> safeTail []
3 safeTail x Nothing
4 | (length x > @) = Just (tail x) |*Test> safeHead []
5 | otherwise = Nothing Nothing
6 *Test> tail []
/7 safeHead x **% Exception: Prelude.tail: empty list
8 | (length x > @) = Just (head x) |,
: : Test> head []
9 | otherwise = Nothing . .
10 *¥** Exception: Prelude.head: empty list
11 *Test>
12
12
< 4

Windows (CR LF)

UTF-8

51

Unwrap Just a?

(3.) WinGHCi

File Edit Actions Tools Help

S0 08U B8N -4

Q{' ChHaskellCode\ Test.hs - Notepad++

File Edit Search View Encoding Language Settings Tools

?

- | .

Macre Run Plugins Window

X

cEHEE G s Mb(/oe|/ayg|as|BE| =1 EHFD ~

*Test> x = safeHead [1, 2, 3, 4, 5] o Tt 3 | kel]
*Test> X 1 module Test where .
Just 1 °

3 data Pt3 = Pt3 Float Float Float
*Test> y = \(Just a) -> a A
*Test> y x 5 ptX (Pt3 xy z) = X
1)) & ptY (Pt3 xy z) =y
*Test> | Just like pulling values 7 ptZ (Pt3xy z) = 2

out of our Pt data type! 8
S
S length: 1, Ln:7 Col:5 Sel:0|0 Windows (CR LF) UTF-8 IMS

© Alex Ufkes, 2020, 2022 52

(3.) WinGHCi
File Edit Actions Tools Help

Q‘[’ *Ch_cpsi0B\haskell\Test.hs - Motepad++ J x |-|j F] |E| |m || (ﬁ |E| || |g|
File Edit 5earch View Enceding Language Settings Tools Macro Run Plugins Wing o -
 SHEHBSGAE Bioc i aa BR =1 ED Test> x = safeHead [8, 6, 4]

* — .
[Tesths 3 |Elcondie)] Test> y = safeTail [8, 6, 4]

=

*Test> tMaybeVal
1 module Test where est> getMaybeVal X

8

2 *

5 cafeTail x [;e:§> getMaybeVal y

4 | (length x > @) = Just (tail x) *Tests :t getMaybeval

Z | otherwise = Nothing getMaybeVal :: Maybe a -> a
*Test)‘

7 safeHead x

8 | (length x > @) = Just (head x)

9 | otherwise = Nothing

10

11 getMaybeVal (Just a) = a

12

13

Alkd Ufkes, 2020, 2022

-1 C

Unwrap Nothing?

(3.) WinGHCi - O ¥
File Edit Acticns Toels Help

S ODEUWERN -
*Test> x = safeHead []

*Test> x

Nothing

*Test> y = \(Nothing) -> ©
*Test> y x
0

*Test)‘

© Alex Ufkes, 2020, 2022

Why Not This?

sateHead x
| (length x > ©) = head x
| otherwise = ©

(3.) WinGHCi
File Edit Actions Teols Help

S¥LDD 00RE BN E Zero as error code

*Test> :t safeHead th?t if hgad of list is' actually 0?
safeHead :: Num p => [p] -> p Static typing means list passed to
*Test> | safeHead can only be instance of Num!
Just can contain anything
Nothing is useful as an “error” value

© Alex Ufkes, 2020, 2022 55

Using Maybe

Maybe can make code safer by gracefully dealing with failure.
Should we use Maybe for everything?

No. Not everything has a chance to fail. Wrapping the return type
of (x > y) in Maybe only serves to obfuscate your code.

© Alex Ufkes, 2020, 2022

56

Consider a Lookup Table

We have a list of tuple pairs:

book = [

© Alex Ufkes, 2020, 2022

(“Alex”,
(““John”,
((‘(TimJ),

(“Mark”,
(“Bill”,

555),
444) ,
333),
222),
111)

]

We want to search the
table for a name

If found, return its number
If not found, return.... ?

57

Use lookup

Qf' ChHaskellCode\ Test.hs - Notepad++

— | x

File Edit Search View Encoding Language Settings Tools Macro Rur
cHHEEGE| Do |ianxx|BE
B Main hs 3 ETest.hsEﬂl

(3.) WinGHCi
File Edit Actions Toocls Help

S ¥ 008 W EsN

ks

1 module Test where
2
3 book = [("Alex", 555),
4 ("John", 444),
7 ("Tim", 333),
6 ("Mark", 222),
7 ("Bill", 111)]
8
S
10
11

(12

length: 2729 liln:9 Col:2 5

© Alex Ufkes, 2020, 2022

*Test> lookup "Alex" book
Just 555

*Test> lookup "ggg" book
Nothing

*Test>

It’s not obvious what to return if an item is not found.
We might return -1, or 0, but what if these are legitimate
12 values that could be returned if a key was found?

In Haskell we can use Maybe for this.

Preferable to an arbitrary default value, or an exception.

58

Just 555 VS 555

(3.) WinGHCi - O ¥
File Edit Actions Tools Help

Ty D= 4 Bk O |e We would like to extract

*Test> lookup "Alex" book the numeric value 555
Just 555

*Test> (Just 555) + 6

* Can’t do arithmetic on
Just 555, for example.

<interactive>:90:1: error:
e Non type-variable argument in the
constraint: Num (Maybe a)
(Use FlexibleContexts to permit th
is)
e When checking the inferred type

2 h in LTV - Pl Y R, Klevwe S BAmn. ¥

4

© Alex Ufkes, 2020, 2022

Just 555 VS 555

If we have a Just value, we can see its contents and

e

xtract through pattern matching

er ChHaskellCode\Test.hs - Motepad++

B Mainhs £1 =] Testhz 3 |

File Edit Search View Encoding Language Settings Tools

cHHERGE| skl oc| i x| EE| = 1 Q) wineH

- | pod
Macre Run Plugins Window 7 A

File Edit Acticns Teocls Help

1 module Test where

2

3 fmm = case m of

4 Nothing -> ©

5 Just x -> x

6

7 book = [("Alex",

8 ("John",

9 ("Tim",

10 ("Mark",
© AIe%JZUfkes, 2020, 20% B111"

555),
444),
333),
222),
111)]

SN OD8UE 8N -

*Test> z = lookup "Alex" book
*Test> fm z

555

*Test> (fm z) + 8

563

*Test>|

60

Use lookup

Qf ChHaskellCode\ Test.hs - Notepad++

File Edit Search View Encoding Language Settings Teecls Macre Run Pluging Win

S L LE bR e |« < m = =0 Value from bookl is the key to book?2

B Tes e 03 | EVSRRRIEH] * Value of book2 is the key to book3
16 Nothing -> 0 e We want the value from book3
11 Just x -> x
12
13 bookl =

"Alex", 555), ("John" 444), :
14 [(STimﬁ}j 333)2 (SMaikP Not every value in book1

15 corresponds to a key in book?2.
16 book2 = [(555, (444, 2), Not every value in book2

17 (333 (111, 4)] .

18 corresponds to a key in book3
19 book3 = [(1, "First"), (2, "Second”), There are several ways a

20 (5, "Third"), (4, "Fourth")] lookup could fail

21

22 |

23

© Ale1(Ufkes, 2020, 2022 v

Q{r ChHaskellCode\ Test.hs - Motepad++

File Edit Search View Encoding Language Settings Toeols Macre Run Plugins Window 7

cHEHEE L ik e 2% BE(ZT1EEEH Y

[=] Tesths E9 |E Main hs ._il

1 module Test where

getPlace :: String -> Maybe String

getPlace name = do
code <- lookup name bookl
num <- lookup code book2
lookup num book3

W oo~ B WK

fm m = case m of
10 Nothing -> ""
11 Just x -> x

© Alex Ufkes, 2020, 2022

12

13 bookl = [("Alex", 555), ("John", 444),
14 ("Tim", 333), ("Mark", 222)]
15

16 book2 = [(555, 1), (444, 2),

17 (333, 3), (111, 4)]

18

19 book3 = [(1, "First"™), (2, "Second"),
20 (5, "Third"), (4, "Fourth")]
21

What happens if lookup fails to
find a match?

We saw that it returns Nothing
What happens if we try to
lookup Nothing?

length: 3,024 lines:1Ln:23 Col:2 Sel:0|0 Windows (CR LF) UTF-2

(A WinGHCi — X
File Edit Actions Tools Help

Sy 00U BN -4

*Test> :t getPlace

getPlace :: String -> Maybe String
*Test> getPlace "Alex"

Just "First"

*Test> getPlace "Tim"

Nothing

*Test> getPlace "Mark"

Nothing

*Test> fm (getPlace "Alex")

"First"

*Test> 62

Cascading Failure

[of C:\HaskellCode\Test.hs - Notepad++ - O e [C:\HaskellCode\Test.hs - Notepad++ - O e
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 X
o 5 A= 0 2 | x| BB EEEER ” o 5 s s @ | 2 | x| BE|=1T EBEER 7
[Tesths 3 | igmRe)] i Tesths 23 | MEnRe]
1 module Test where 8 1 module Test where 8
2 2
3 getPlace :: String -> Maybe String 3 getPlace :: String -> Maybe String
4 getPlace name = do 4 getPlace name =
5 code <- lookup name bookl 5 lookup name bookl >>=
6 num <- lookup code book2 (\code -> lookup code book2) »>>=
7 lookup num book3 (\num -> lookup num book3)
8
9 fmm = case m of fm m = case m of
10 Nothing -> "" Nothing -> ""
11 Just x -> X Just x -> X
12 12
13 bookl = [("Alex", 555), ("John", 444), 13 bookl = [("Alex", 555), ("John", 444),
14 ("Tim", 333), ("Mark", 222)] 14 ("Tim", 333), ("Mark", 222)]
v 15 63

@ Alex Ufkes, 2020, 2022

>

Cascading Failure

o~

Q{ ChHaskellCode\Test.hs - Motepad++ — O

File Edit Search View Encoding Language Settings Tools
s s & |2 Byl *x BE| = E
[=] Tesths 4 IE-] Main hs l

Macre Run Plugins Window 7

o B

ot

X

_I.. g

1 module Test where

getPlace :: String -> Maybe String

- -I-V'\J'I\Llll-l

-> lookup num book3)

9 fmm = case m of
10 Nothing -> ""
11 Just x -> X
12
13 bookl = [("Alex", 555), ("John", 444),

("Tim", 333), ("Mark"™, 222)]

:)Ayngﬁkes 2020, 2022

]

When the first argument to (>>=) is
Nothing, it just returns Nothing
while ignoring the given function
This causes failure to cascade

If the first lookup fails, Nothing is
passed into the second >>=.

The failure then cascades into the
third >>=, and is returned.

After the first Nothing, subsequent
>>= pass Nothing to each other

64

© Alex Ufkes, 2020, 2022

When the first argument to (>>=) is Nothing, it just
returns Nothing while ignoring the given function

(3. WinGHCi - O X
File Edit Acticns Tools Help

7y B QOIDEE N -

Prelude> (Just 77) >>= (_ -> (Just 5))

Just 5

Prelude> Nothing >>= (_ -> (Just 5))
Nothing

Prelude> (Just Nothing) >>= (_ -> (Just 5))
Just 5

Prelude> Nothing >>= (_ -> (Just 5))
Nothing

Prelude>

65

Moving on...

...t0 Imperative.

Rust is an imperative language. However, we’ll see many cool features
that remind us of the functional languages we’ve seen.

© Alex Ufkes, 2020, 2022

66

© Alex Ufkes, 2020, 2022

68

