
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 8: Side effects and actions in Haskell

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

Course Administration

3

• Don’t forget about the assignments!

© Alex Ufkes, 2020, 2022

4© Alex Ufkes, 2020, 2022

Let’s Get Started!

5© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 6

Previously

Previously

7© Alex Ufkes, 2020, 2022

Ord:

Num:

8© Alex Ufkes, 2020, 2022

Pure Code,
Monads,

Actions

9© Alex Ufkes, 2020, 2022

A function can be said to have a side effect if it has an observable
interaction with the outside world aside from returning a value.

• Modify global variable
• Raise an exception
• Write data to display or file

Every function is pure

Pure Functions: Functions that have no side effects.

10© Alex Ufkes, 2020, 2022

This was the very first thing we saw!

Write to Display

11© Alex Ufkes, 2020, 2022

• Haskell separates pure functions from computations where
side effects must be considered

• Encodes side effect-producing functions with a specific type.
• We’ve already seen an example of this:

Haskell and I/O

12© Alex Ufkes, 2020, 2022

Haskell and I/O

• The actual act of printing to the screen
does not occur as a result of a function call.

• Printing to the screen is an action.
• Actions are values, they have a type!
• putStrLn accepts a String argument.
• What it returns is an action of type IO()

13© Alex Ufkes, 2020, 2022

Speaking precisely:
• putStrLn is a function (no side effects!)

o Takes a String as an input argument
o Returns an action, whose type is IO()

• When the IO() action is executed, it
returns ().

• This can be read as an empty tuple.
• The action, when executed, produces a

side effect.
• The putStrLn function, strictly speaking,

does not.

Haskell and I/O

14© Alex Ufkes, 2020, 2022

Execute the action

Haskell and I/O

• Actions are values, just like strings and numbers.
• They are completely inert – they do not affect the

real world until executed. 15© Alex Ufkes, 2020, 2022

• We can also look at getLine
• getLine returns an IO action also
• It returns a String (IO String vs IO ())
• Ordinary Haskell evaluation doesn’t

cause actions to be executed.
• GHCi will execute actions for us, as

seen previously.

Haskell and I/O

16© Alex Ufkes, 2020, 2022

Just remember: actions are not functions.

Functions are evaluated, actions are executed or run

Actions are values. Actions can be returned by functions
or passed as arguments.

Actions have a type. We’ve seen one so far, IO

Functions are pure. Actions (specifically IO actions),
when executed are not.

17© Alex Ufkes, 2020, 2022

Actions can only be executed from within other actions.

A compiled Haskell program begins by executing a
single action – main::IO()

18© Alex Ufkes, 2020, 2022

https://wiki.haskell.org/Introduction_to_Haskell_IO/Actions

Recall: Every compiled Haskell program must have a main function:

• The main function is a single action
• This action is executed when the program is run.
• A Haskell program, by itself, is a single action that

is executed when we run the program.

main::IO()

19© Alex Ufkes, 2020, 2022

• A Haskell program begins with the execution of a single action (main::IO())
o Functions that return actions are often incorrectly referred to as actions.

• From within this action, any number of additional actions can be executed
• Pure functions can also be called/evaluated from within actions!
• However – actions cannot be executed from within pure functions.
• If we try, Haskell will infer the type of the function as an action.

Staying Grounded

20© Alex Ufkes, 2020, 2022

• An action can be thought of as a recipe
• This recipe (in the case of IO) is a list of instructions that

affect the world outside our program.
• The act of creating this recipe does not have side effects.
• The recipe can be the output of a pure function.
• Same inputs to the function, same recipe.

Staying Grounded

21© Alex Ufkes, 2020, 2022

We can use the <- operator to execute:

• The <- operator is used to pull out the
result from executing an IO action.

• We can then bind a name to it.
• The return value of getLine is an action.
• Executing that action returns a String.

IO Actions

22© Alex Ufkes, 2020, 2022

IO Actions

23© Alex Ufkes, 2020, 2022

We can do this using the do keyword:

When using the do keyword, we can
execute one action per line.

Combining Actions

24© Alex Ufkes, 2020, 2022

do is syntactic sugar for >>

• >> says execute this, then this.
• If the first action produces a result,

it is discarded.
• What if we want to use the result?

• Use the >>= operator to pipe the result
into the next action.

Combining Actions

25© Alex Ufkes, 2020, 2022

do is syntactic sugar for >>

• >> says execute this, then this.
• If the first action produces a result,

it is discarded.
• What if we want to use the result?

• Use the >>= operator to pipe the result
into the next action.

• Here, we grab a string using getLine,
and display it using putStrLn

• getLine returns an action that
produces a string

• putStrLn takes string as an argument.

Combining Actions

26© Alex Ufkes, 2020, 2022

27© Alex Ufkes, 2020, 2022

• Lambda function accepting 1 arg, name
• Received directly from the getLine above

More Complicated

28© Alex Ufkes, 2020, 2022

Up until now, we’ve only really seen how to evaluate
expressions (and execute actions, though we didn’t know
that’s what we were doing) in GHCi.

Now we’re seeing how to write, compile, and execute a
complete Haskell program containing actions.

29© Alex Ufkes, 2020, 2022

30© Alex Ufkes, 2020, 2022

• Use <- when binding the result of executing an action
• Use let and = when binding the result of an expression

Actions & Functions

31© Alex Ufkes, 2020, 2022

• We are executing actions in main
• Its return type must be an action.
• The value of a “do” block is the value

of the last expression evaluated

Problem?

32© Alex Ufkes, 2020, 2022

• Return is NOT a keyword; it is a function.
• It does not break control flow, or “return”

from a function
• It takes a value and creates an action that

produces that value when executed.
• In this case, an action that produces ()

return ()

33© Alex Ufkes, 2020, 2022

• Here we get a clue about monads
• Monad is actually a type class
• This syntax resembles other type

classes we’ve seen.

Monads & return ()

34© Alex Ufkes, 2020, 2022

35© Alex Ufkes, 2020, 2022

Monad is a typeclass:

We’ve seen these:
• >>= passes the result on the left

into the function on the right.
• >> Ignores the result on the left
• return wraps data in a monad

Monads

36© Alex Ufkes, 2020, 2022

“Monadic” Pertaining to monads. A monadic type is an
instance of type class Monad (IO, for example)

“type xxx is a
Monad”

xxx is an instance of type class Monad. xxx
implements >>, >>=, and return

“action” Another name for a monadic value

By the way:
• It turns out that Monads are good for

things other than side effect-producing IO.
• We’ll see an example coming up.

Monad Jargon

37© Alex Ufkes, 2020, 2022

>>= Chains actions together. Result of left side
is given as input to the right side.

>> Chains actions together. Ignore
result of left side.

a >> b VS a >>= _ -> b

>> can be defined in terms of >>=

>>= VS >>

Where the
magic happens

38© Alex Ufkes, 2020, 2022

• Function that reads in a number
• Returns true if < zero, false otherwise
• Problem: We’re creating IO actions
• The return type cannot be Boolean
• It must be IO something

Non-main Example

39© Alex Ufkes, 2020, 2022

What if we still want to get a Boolean back?

• The return type of
positive is an IO action.

• When executed, that
action produces a Bool

Extract the value from
the action using <-

Non-main Example

40© Alex Ufkes, 2020, 2022

We can still call pure functions from actions:

Calling Pure Code

41© Alex Ufkes, 2020, 2022

Separate pure code into its own functions:

Pure!

Action

Best Practice

42© Alex Ufkes, 2020, 2022

Even at this point, however, Haskell sets itself apart
from imperative languages.

It creates a separate type of programming construct for operations
that produce side effects

Imperative languages do no such thing, and make no guarantees
whatsoever regarding function purity

We can always be sure of which parts of the code will alter the state
of the world, and which parts won’t.

When looking at main, Haskell looks rather imperative…

43© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 44

Monads

“The essence of monad is thus separation of composition
timeline from the composed computation's execution timeline, as

well as the ability of computation to implicitly carry extra data”

“This lends monads to supplementing pure calculations with features
like I/O, common environment, updatable state, etc.”

Not just for I/O! Not just for side effects!

Monads were originally introduced for IO operations

It turns out, as a construct, they are useful for modelling
other things as well!

For example: exception handling, non-determinism, etc.

Maybe Monad

45© Alex Ufkes, 2020, 2022

Represents a computation that might not produce a result

Computations that might “go wrong”

For example – calling tail with a list that might be empty

We can use Maybe to create a safety wrapper for functions
that might fail, depending on input.

Maybe Monad

46© Alex Ufkes, 2020, 2022

Maybe:
• Custom data type
• Instance of Monad
• Maybe a can be

Nothing, or Just a

Maybe Monad

47© Alex Ufkes, 2020, 2022

Pt can take the value Pt3 Float
Float Float, or Pt2 Float Float

Maybe can take the value
Nothing or Just a

We’ve seen this before…

48© Alex Ufkes, 2020, 2022

• Define safe functions for head and tail.
o Using guards - |

• Instead of failing on empty lists,
evaluate to Nothing.

• If a tail or head can be found, evaluate
to Just head x, or Just tail x

• Just head? Just tail?

Maybe Monad

49© Alex Ufkes, 2020, 2022

• When we call safeHead on a non-
empty list, we don’t get the head.

• We get Just head
• This is the head of the list

wrapped in a Maybe monad.
• Remember that Maybe is a type,

just like our custom Pt type

Maybe Monad

50© Alex Ufkes, 2020, 2022

Maybe Monad

51© Alex Ufkes, 2020, 2022

Just like pulling values
out of our Pt data type!

Unwrap Just a?

52© Alex Ufkes, 2020, 2022

53© Alex Ufkes, 2020, 2022

If you need to decide on some numeric
literal for Nothing, you can do so

Unwrap Nothing?

54© Alex Ufkes, 2020, 2022

safeHead x
| (length x > 0) = head x
| otherwise = 0

Zero as error code
• What if head of list is actually 0?
• Static typing means list passed to

safeHead can only be instance of Num!
• Just can contain anything
• Nothing is useful as an “error” value

Why Not This?

55© Alex Ufkes, 2020, 2022

Maybe can make code safer by gracefully dealing with failure.

Should we use Maybe for everything?

No. Not everything has a chance to fail. Wrapping the return type
of (x > y) in Maybe only serves to obfuscate your code.

Using Maybe

56© Alex Ufkes, 2020, 2022

We have a list of tuple pairs:

book = [(“Alex”, 555),
(“John”, 444),
(“Tim”, 333),
(“Mark”, 222),
(“Bill”, 111)]

• We want to search the
table for a name

• If found, return its number
• If not found, return…. ?

Consider a Lookup Table

57© Alex Ufkes, 2020, 2022

• It’s not obvious what to return if an item is not found.
• We might return -1, or 0, but what if these are legitimate

values that could be returned if a key was found?
• In Haskell we can use Maybe for this.
• Preferable to an arbitrary default value, or an exception.

Use lookup

58© Alex Ufkes, 2020, 2022

• We would like to extract
the numeric value 555

• Can’t do arithmetic on
Just 555, for example.

Just 555 VS 555

59© Alex Ufkes, 2020, 2022

If we have a Just value, we can see its contents and
extract through pattern matching

Just 555 VS 555

60© Alex Ufkes, 2020, 2022

• Value from book1 is the key to book2
• Value of book2 is the key to book3
• We want the value from book3

• Not every value in book1
corresponds to a key in book2.

• Not every value in book2
corresponds to a key in book3

• There are several ways a
lookup could fail

Use lookup

61© Alex Ufkes, 2020, 2022

• What happens if lookup fails to
find a match?

• We saw that it returns Nothing
• What happens if we try to

lookup Nothing?

62© Alex Ufkes, 2020, 2022

Is the
same as:

Cascading Failure

63© Alex Ufkes, 2020, 2022

• When the first argument to (>>=) is
Nothing, it just returns Nothing
while ignoring the given function

• This causes failure to cascade
• If the first lookup fails, Nothing is

passed into the second >>=.
• The failure then cascades into the

third >>=, and is returned.
• After the first Nothing, subsequent

>>= pass Nothing to each other

Cascading Failure

64© Alex Ufkes, 2020, 2022

65

When the first argument to (>>=) is Nothing, it just
returns Nothing while ignoring the given function

© Alex Ufkes, 2020, 2022

Moving on…

…to imperative.

Rust is an imperative language. However, we’ll see many cool features
that remind us of the functional languages we’ve seen.

66© Alex Ufkes, 2020, 2022

67© Alex Ufkes, 2020, 2022

68© Alex Ufkes, 2020, 2022

