
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 7: Types, type classes, custom types.



© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital 
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students 
registered in course C/CPS 506 can use this material for the purposes 
of this course but no other use is permitted, and there can be no sale 
or transfer or use of the work for any other purpose without explicit 
permission of Alex Ufkes.



Course Administration (CCPS)

3

Haskell labs released today!

© Alex Ufkes, 2020, 2022



Any Questions?

4© Alex Ufkes, 2020, 2022



5

Let’s Get Started!

© Alex Ufkes, 2020, 2022



Statically Typed:
• Haskell uses static type checking.
• Every expression is assigned a type.
• If a function’s arguments aren’t the expected 

type, a compile error occurs.

Type Inference
• In Haskell, we need not specify type explicitly.
• It is inferred by the context: X = “Hello”, X is a string.
• However, we can explicitly specify types.
• Good practice when we know what types we want; 

compiler will give errors upon type mismatch.

© Alex Ufkes, 2020, 2022 6

Types in Haskell



:t can be used to reveal type:

• 1 is instance of Num type class. 
• 1.0 is instance of Fractional type class.

• ‘a’ is a Char
• “Hello” is a [Char]
• [Char] = String
• t is a Bool

© Alex Ufkes, 2020, 2022 7

Types in Haskell



Type Variables:
• p is a type variable whose value can be any 

type in typeclass Num (Integer, Float, etc.)
• Haskell is free to treat 7 as it sees fit, so long 

as it does so in a way that adheres to the 
operations defined in type class Num.

Num p => p ?

© Alex Ufkes, 2020, 2022 8



Haskell tries to keep types as generic as possible
• If we explicitly declare a variable as integer, it 

can’t be passed to a function requiring float.
• However, if we generically infer it to be a Num, 

it can be used anywhere any other member of 
Num is allowed.

© Alex Ufkes, 2020, 2022 9

Typeclasses?



We can explicitly indicate types:

• Use :: to assign a type
• My advice for you is to start by letting 

the inference engine figure it out.
• At this point, it knows better than you.

© Alex Ufkes, 2020, 2022 10

Types in Haskell



When binding a name, can 
indicate type explicitly:

© Alex Ufkes, 2020, 2022 11

We can explicitly indicate types:

Types in Haskell



Type polymorphism and type variables:

Recall: Overloading
• In languages like C++, the == operator is 

overloaded to work with many different types.
• Numeric type equality and string equality are 

performed differently.
• In general, if we want to compare two values of 

type α, we use an α-compare
• α is a type variable, because its value is a type.

Type Classes

© Alex Ufkes, 2020, 2022 12



Consider the equality (==) operator:

Takes two arguments, each of the same type (call it α), and returns a Boolean 

This operator may not be defined for all types, just some.

Thus, we can associate == with a specific type class containing those 
types for which == is defined.

This type class is called Eq in Haskell.

Type Classes

© Alex Ufkes, 2020, 2022 13



(==) is defined for types 
in typeclass Eq

• (==) takes two args of type a, where 
a is a member of type class Eq

• It returns Bool

• If a concrete type, a, belongs to a certain type 
class, we say a is an instance of that type class.

• Int is an instance of Eq, for example.

© Alex Ufkes, 2020, 2022 14

Eq Type Class



© Alex Ufkes, 2020, 2022 15



• This grants numeric values freedom to be an 
integer or floating point as the compiler sees fit.

• Num class contains all numbers, and certain 
operations over them such as addition.

© Alex Ufkes, 2020, 2022 16

Num Type Class



• p is a type variable
• The type of 5 is p, and p is a 

member of type class Num

© Alex Ufkes, 2020, 2022 17

Num Type Class



© Alex Ufkes, 2020, 2022 18



Types that are members of the 
Show class have functions which 
convert their value to a String.

© Alex Ufkes, 2020, 2022 19

Show Type Class



• Based on what we’re doing in square and 
sum (multiplying and adding)…

• Haskell determined that input and output 
type should be instances of typeclass Num.

• (+) and (*) are both defined for all types 
in typeclass Num.

20

Functions & Typeclasses

© Alex Ufkes, 2020, 2022

Argument types Return 
type



head takes a list containing type a, 
and returns a value of type a

tail takes a list containing type a, 
and returns a list containing type a

© Alex Ufkes, 2020, 2022 21

Function Type Signatures

a and b can be literally any type!



putStrLn:
• Accepts String, returns IO action.
• String is input, IO() is output.
• More on IO actions later.

© Alex Ufkes, 2020, 2022 22

Function Type Signatures

Same as [Char]



• chkAxis takes a pair-tuple of Floats as 
input, and returns the same as output.

• Instead of constants being of type Num or 
Fractional, they are treated as Floats

23

Specify Function Type

© Alex Ufkes, 2020, 2022



Specify Function Type

© Alex Ufkes, 2020, 2022 24



25

Thoughts?

© Alex Ufkes, 2020, 2022



?
Ord is a type class:
• When we didn’t explicitly define our types, 

Haskell inferred the type for us.
• Ord is a type class under which the 

operations used on our inputs are defined.
• I.e., comparison operators. 

26© Alex Ufkes, 2020, 2022



• Int & Char are types, not type classes
• We can use the above notation

• Ord is a type class, thus we specify 
that a is an instance of Ord

• cmp2 accepts two instances of Ord 
as arguments.

• Ord contains many different types,
a can be any of them

27

Type VS Type Class

© Alex Ufkes, 2020, 2022



• Ord is a type class that supports comparison
• Comparison is all we’re doing in our function
• Thus, Haskell infers types as Ord

28

Ord Type Class

© Alex Ufkes, 2020, 2022



Int is an instance of Ord type class, so when we 
made our function args explicitly Int, we were OK

29

Ord Type Class

© Alex Ufkes, 2020, 2022



30

How About This?

© Alex Ufkes, 2020, 2022



Num type class does not 
define comparison!

31© Alex Ufkes, 2020, 2022



Num doesn’t have comparison, Ord doesn’t have addition

It compiled and loaded, what type did Haskell infer for x and y?

32

Hmmmm…

© Alex Ufkes, 2020, 2022



Both!
• Whatever type we pass in (a), it must 

be an instance of both Ord and Num.
• Int is one such type, as is Float

33© Alex Ufkes, 2020, 2022



Ord:

Num:

34© Alex Ufkes, 2020, 2022



Custom Data Types

35© Alex Ufkes, 2020, 2022



• Lists and tuples are already quite powerful for organizing data
• What if we want to add custom behaviors over our data?
• For example, we can declare a pair tuple (1, 2).
• What if we want to treat these as coordinates and compute 

the sum? The dot product? Etc.?
• Addition is not defined for tuples, let alone more complicated 

operations.

36

Custom Data Types

© Alex Ufkes, 2020, 2022



data Pt3 = Pt3 Float Float Float

Keyword 
indicating a 
custom type 

definition

Constructor for our custom type. 
To construct a Pt3, we need 3 

values of type Float

37

Custom Coordinate Types

Custom 
type name

© Alex Ufkes, 2020, 2022



38© Alex Ufkes, 2020, 2022



Echoing a value in the interactive window 
requires its type to be an instance of Show!

39

Custom Type Usage

© Alex Ufkes, 2020, 2022



• The values contained in Pt3 are Float, and we know 
that Float is an instance of Show.

• How can we access the individual elements of Pt3?

40

Hmmm…

© Alex Ufkes, 2020, 2022



• Three access functions, one for 
each of the three values.

• Take as arguments Pt3 (and by 
extension its three members)

• Return x, y, or z coordinate
respectively.

41© Alex Ufkes, 2020, 2022



• Define Pt3 with three parameters
• Define Pt2 with two parameters
• Name of our data type is now simply Pt, 

because we have made it more generic.

There is now a problem with our access functions

42

Overloading Constructor

© Alex Ufkes, 2020, 2022



There is now a problem with our access functions.

Now our access 
functions work for 
both Pt2 and Pt3

43© Alex Ufkes, 2020, 2022



Recall:

44

Deriving Show

© Alex Ufkes, 2020, 2022



Our custom type will inherit some 
default display behavior from Show

45

Deriving Show

© Alex Ufkes, 2020, 2022



Compute length of Pt2 and Pt3, 
treating them as vectors

46

More Advanced Functions

© Alex Ufkes, 2020, 2022



Let’s add more functions!
• We can very easily define addition as the 

sum of each respective X and Y coord
• Likewise for subtraction and equality.

47

Addition, Subtraction, Equality?

© Alex Ufkes, 2020, 2022



48

Addition, Subtraction, Equality?

© Alex Ufkes, 2020, 2022



This seems very clunky. Why can’t we simply add, subtract, or 
check equality with the symbolic operators (+, -, ==)?

We can! Equality is defined for instances of type class Eq
+, -, etc. are defined for instances of type class Num.

How do we make Pt2 and Pt3 instances of another type class?

49

Addition, Subtraction, Equality?

© Alex Ufkes, 2020, 2022



Declare Pt to be 
an instance of Eq

Define what it means for two Pt2 
values to be considered equal

50

Custom Types & Type Classes

© Alex Ufkes, 2020, 2022



51© Alex Ufkes, 2020, 2022



• The minimal definition for being an 
instance of Eq is == *OR* /= (not equal)

• We only defined == 

52

Minimal Definition

© Alex Ufkes, 2020, 2022



Haskell is clever enough to 
derive /= from our definition of 

==, and vice versa.

53© Alex Ufkes, 2020, 2022



54

Let’s Add /= Anyway

© Alex Ufkes, 2020, 2022



55

Instance of Num

© Alex Ufkes, 2020, 2022



• We’re only implementing for Pt2.
• Adding Pt3 follows the same pattern

56© Alex Ufkes, 2020, 2022



57

Instance of Num

© Alex Ufkes, 2020, 2022



• This may look circular
• We’re using abs and signum in our 

definition of abs and signum.
• However! x1 and y1 are Float.
• abs and signum are defined for Float
• We’re defining them for Pt2

58© Alex Ufkes, 2020, 2022



• fromInteger is a coercion function.
• Dictates how our custom type can be 

created from an Integer
• Takes an Integer, returns a Pt
• Allows us to do this…

© Alex Ufkes, 2020, 2022 59



No more 
warnings!

60© Alex Ufkes, 2020, 2022



61© Alex Ufkes, 2020, 2022



In Java-speak, define our own toString(), instead of deriving the default

• The minimal definition for Show is easy
• Need to implement show OR showsPrec
• Let’s do show
• Need to go from Pt2 to a String

62

Instance of Show

© Alex Ufkes, 2020, 2022



No longer need to derive 
Show, we’ve made our own

• Use string concatenation to create a pleasing visual output for Pt2
• In doing so, we make use of show as defined for Floats

63© Alex Ufkes, 2020, 2022



64© Alex Ufkes, 2020, 2022



https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial

Haskell Tutorials/References:

http://cheatsheet.codeslower.com/CheatSheet.pdf

65© Alex Ufkes, 2020, 2022



66© Alex Ufkes, 2020, 2022


