CPS506 - Comparative Programming Languages

Comparison

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason KA

RYERSON
UNIVERSITY

Evolution of Programming Languages

@ Machine Language

@ Assembly Language

@ Low-Level Languages

@ Programming Paradigms

Imperative
Functional
Object-Oriented
Concurrent
Parallel and Array
Declarative
Constraint
Dataflow

o Efficiency

Assembler

Native Code Compilers (Ahead-Of-Time)
Source Interpreters

Byte-Code Interpreters

Just-In-Time Compilers

@ Architecture/Language/Compiler entanglement

Parallelism
Memory Address
1312

31 430

Many paradigms over time

@ Imperative - Fortran, C, Rust

@ Functional - Lisp, Scheme, Clojure, Elixir, Haskell

@ Object-Oriented - Simula, Smalltalk, C++, Java, Ruby
° - Erlang, Elixir, Concurrent Euclid

@ Parallel and Array - APL, MATLAB, R, SISAL
@ Declarative - yacc, make
@ Constraint - Prolog
°

Dataflow - LabVIEW, PureData, Kit, Prograph, Max/MSP,
spreadsheets

Programming Language Basics

@ Static/Dynamic Distinction
e Declarations
o Types
e Bounds
e Values

@ Names, Identifiers, Variable
o |dentifiers are indentifying strings of characters
e Variables are locations that contain values
- usually mutation is implied
o Aliasing - a variable can have multiple names
@ Procedures, Functions, Methods
e Functions act by returning a value
- Pure functions have no side effects
e Procedures act by side-effect
e Methods are procedures/functions associated with an object
(possibly via a class)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Programming Language Basics ...

@ Declarations, Definitions

Declarations designate space/type
Definitions give values/implementations

@ Parameter Passing Mechanisms

Call-by-Value
Call-by-Reference
Call-by-Name
Call-by-Value-Return
Call-by-Pattern

Recognizing language components

@ Scanner

convert characters to tokens

ignore comments/whitespace (unless relevant)
highest throughput

usually Regular-Expressions

implemented as Finite-State-Automata (FSA)

@ Parser

order of tokens

typically convert to Abstract-Syntax-Tree (AST)
usually Context-Free-Grammar

many classes of CFGs

implemented as Pushdown-Automata
recursive-descent or table-driven

@ Semantic Analysis

type checking

imnlementaed aec Contevi-Qancitive-(Rrammar

Syntax

@ Simplicity - how much to learn
o size of the grammar

e complexity of navigating modules/classes

e complexity of the type system
@ Orthogonality - how hard to learn, how do features interact

e number of special syntax forms
e number of special datatypes
e type system

@ Extensibility - how can language align with problem

functional
syntactically
defining literals
overloading

E.g. straight-line programming language

a

= 5 + 3;
semicolon
assign
leftParen
rightParen
plus
minus
times
divide
comma
id
print
num

b

(print (a , a - 1

*

/

l[a—-zA-Z] [a—zA-Z] *
print

[0-9][0-9] %

)

4

10 » a); print (b)

FSAs can't count

CFGs can only count one thing

CSG is Turing-complete

Stm — Stm; Stm (CompoundStm) = M_*____
Stm — id:=Exp (AssignStm) A i
Stm — print (ExpList) (PrintStm) s ame e R
Exp — id (IdExp) N N :
Exp — num (NumExp) B el v - =
Exo — ExpBinopExp (OpExp) i T
Exp — (Stm, Exp) (EseqExp) 2N "
ExpList — Exp, ExpList (PairExpList) P b G
ExpList — Exp (LastExpList) A ' .
Binop — + (Plus) '1" ""i""' " '
Binop — - (Minus) : i
Binop — « (Times) r b
Binop — / (Div) - e

! '

a:=5+3; b:=(print (a, a-1) , 10 x a) ; print (b)

I [-
1l1|'.|. s)
1 . |'-'-lII -’__.'| @ Special forms
IR mn |
I_ |' 1 = e Postscript
- el § o Smalltalk
P 1 =] e Scheme
- LN ‘b4 e everything else
e 1 of &1 7]

Prefix

(= (foo a (» (+ bc) (= (+de £)))) 9)
@ Lisp (Scheme, Clojure)

@ Untyped

e similar to machine code
e operations act on bits regardless of outcome

hecki f t
@ what does code mean @ no checking of any type
@ Dynamic Typing

@ addition to syntax - Gef
@ more powerful syntactic models can include e operations know legal data
@ raise run-time errors
@ Static Typing
e compile-time determination of legality

o weak to strong
e OO cannot be maximally strong

	Evolution
	Syntax

