
CPS506 - Comparative Programming Languages
Comparison

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/

Many paradigms over time

Imperative - Fortran, C, Rust
Functional - Lisp, Scheme, Clojure, Elixir, Haskell
Object-Oriented - Simula, Smalltalk, C++, Java, Ruby
Concurrent - Erlang, Elixir, Concurrent Euclid
Parallel and Array - APL, MATLAB, R, SISAL
Declarative - yacc, make
Constraint - Prolog
Dataflow - LabVIEW, PureData, Kit, Prograph, Max/MSP,
spreadsheets

Evolution of Programming Languages

Machine Language
Assembly Language
Low-Level Languages
Programming Paradigms

Imperative
Functional
Object-Oriented
Concurrent
Parallel and Array
Declarative
Constraint
Dataflow

Efficiency
Assembler
Native Code Compilers (Ahead-Of-Time)
Source Interpreters
Byte-Code Interpreters
Just-In-Time Compilers

Architecture/Language/Compiler entanglement
Parallelism

Memory Heirarchies

Memory Address
31 13 12 4 3 0

Cache Memory

Architectures
Type Checking
Bounds Checking

Programming Language Basics

Static/Dynamic Distinction
Declarations
Types
Bounds
Values

Names, Identifiers, Variable
Identifiers are indentifying strings of characters
Variables are locations that contain values
- usually mutation is implied
Aliasing - a variable can have multiple names

Procedures, Functions, Methods
Functions act by returning a value
- Pure functions have no side effects
Procedures act by side-effect
Methods are procedures/functions associated with an object
(possibly via a class)

Programming Language Basics ...

Declarations, Definitions
Declarations designate space/type
Definitions give values/implementations

Parameter Passing Mechanisms
Call-by-Value
Call-by-Reference
Call-by-Name
Call-by-Value-Return
Call-by-Pattern

Syntax

Simplicity - how much to learn
size of the grammar
complexity of navigating modules/classes
complexity of the type system

Orthogonality - how hard to learn, how do features interact
number of special syntax forms
number of special datatypes
type system

Extensibility - how can language align with problem
functional
syntactically
defining literals
overloading

Recognizing language components

Scanner
convert characters to tokens
ignore comments/whitespace (unless relevant)
highest throughput
usually Regular-Expressions
implemented as Finite-State-Automata (FSA)

Parser
order of tokens
typically convert to Abstract-Syntax-Tree (AST)
usually Context-Free-Grammar
many classes of CFGs
implemented as Pushdown-Automata
recursive-descent or table-driven

Semantic Analysis
type checking
implemented as Context-Sensitive-Grammar
or walking the AST
mostly not needed for dynamically-typed language

Other phases
code generation
optimizations

FSAs can't count

CFGs can only count one thing

CSG is Turing-complete

E.g. straight-line programming language

a := 5 + 3; b := (print (a , a - 1) , 10 * a); print(b)
semicolon : ;
assign : :=
leftParen : (
rightParen :)
plus : +
minus : -
times : *
divide : /
comma : ,
id : [a-zA-Z][a-zA-Z]*
print : print
num : [0-9][0-9]*

Grammar for straight-line programming language

Stm → Stm ; Stm (CompoundStm)
Stm → id := Exp (AssignStm)
Stm → print (ExpList) (PrintStm)
Exp → id (IdExp)
Exp → num (NumExp)
Exp → Exp Binop Exp (OpExp)
Exp → (Stm , Exp) (EseqExp)
ExpList → Exp , ExpList (PairExpList)
ExpList → Exp (LastExpList)
Binop → + (Plus)
Binop → - (Minus)
Binop → * (Times)
Binop → / (Div)

Tree representation of straight-line program

a := 5 + 3 ; b := (print (a , a - 1) , 10 * a) ; print (b)

Expression Syntax

Prefix
(- (foo a (* (+ b c) (- (+ d e f)))) g)

Lisp (Scheme, Clojure)
pre-order traversal of AST
because of the parentheses, support variable arity

Postfix
a b c + d e + f + neg * foo g -

Forth, Postscript, RPN Calculators, Factor
post-order traversal of AST
fixed arity

Infix
Smalltalk, C, APL, Fortran, most other languages
fixed arity
in-order traversal of AST
Precedence

C/C++/C#/Java/Haskell
have many levels (18 for C++)
foo(a,(b+c)*-(d+e+f))-g
a.foo((b+c)*-(d+e+f))-g

APL
many operators
only monadic/dyadic user functions
right-to-left, no precedence
(a foo (b+c)*-d+e+f)-g

Smalltalk
many operators
polyadic user functions
left-to-right, except monadic, dyadic, named
(a foo: b+c*(d+e+f) negated)-g

In summary
(- (foo a (* (+ b c) (- (+ d e f)))) g)
a b c + d e + f + - * foo g -
a.foo((b+c)*-(d+e+f))-g
(a foo (b+c)*-d+e+f)-g
(a foo: b+c*(d+e+f) negated)-g

Statement Syntax

Special forms
Postscript
Smalltalk
Scheme
everything else

Semantics

what does code mean
addition to syntax
more powerful syntactic models can include

Typing

Untyped
similar to machine code
operations act on bits regardless of outcome
no checking of any type

Dynamic Typing
Safe
operations know legal data
raise run-time errors

Static Typing
compile-time determination of legality
weak to strong
OO cannot be maximally strong

	Evolution
	Syntax

