
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 6: Haskell intro, Haskell basics

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

Two languages down, two to go!

Course Administration

3© Alex Ufkes, 2020, 2022

4

Today

Intro to Haskell
• Pure functional
• Haskell basics
• Functions
• Control flow

© Alex Ufkes, 2020, 2022

5© Alex Ufkes, 2020, 2022

Functional Programming

6© Alex Ufkes, 2020, 2022

7© Alex Ufkes, 2020, 2022

8

Functional Programming

© Alex Ufkes, 2020, 2022

Higher-order functions:
• Can return functions or accept them as arguments.

Pure Functions:
• Functions that have no side effects. No interaction

with world outside of local scope
• Easier to verify correctness, thread-safe when no

data dependency is present.

First class functions:
• Can be passed as arguments, returned as values.
• Think of them as values, just like integers or floats

9

Functional Programming

© Alex Ufkes, 2020, 2022

Pure
function

Impure
function

10© Alex Ufkes, 2020, 2022

Strict (eager) VS. non-strict (lazy) evaluation:
• Strict: evaluate function arguments before invoking the function.
• Lazy: Evaluates arguments if their value is required to invoke the function.

Elixir largely performs strict evaluation
(some exceptions, recall Stream, Range)

11

Functional Programming

© Alex Ufkes, 2020, 2022

Strict (eager) VS. non-strict (lazy) evaluation:
• Strict: evaluate function arguments before invoking the function.
• Lazy: Evaluates arguments if their value is required to invoke the function.

https://www.haskell.org/
A great intro to Haskell syntax

12

Functional Programming

© Alex Ufkes, 2020, 2022

Haskell: Functional Programming cranked up to 11

13© Alex Ufkes, 2020, 2022

• Named after logician Haskell Curry
• In the late 80s, interest in lazy functional

languages was growing
• There was a strong consensus to define

an open standard for such languages

14

History

© Alex Ufkes, 2020, 2022

• Haskell 1.0 was defined in 1990
o Continued with version 1.1, 1.2, 1.3, etc.
o Culminated with Haskell 98

• Haskell 2010 was published in July 2010
o Contained uncontroversial features

previously enabled via compiler flags
• Haskell 2020 was intended for 2020

o GHC2021 finally released on Oct 29, 2021

15

History

© Alex Ufkes, 2020, 2022

Purely Functional:
• Every function is pure
• No statements, only expressions
• Cannot mutate variables (local or global)
• Supports pattern matching
• Even side-effect inducing operations are

produced by pure code
• Side effects are handled using monads

16

Features

© Alex Ufkes, 2020, 2022

Statically Typed:
• Every expression has a type

o Determined at compile time
• Types composing expressions must match

o If not, compile error

Type Inference:
• Types don’t have to be written out explicitly

o Though you can if you want
• They will be inferred at compile time

17

Features

© Alex Ufkes, 2020, 2022

Lazy Evaluation:
• Functions don’t evaluate their arguments
• Control constructs written as functions
• Easy to fuse chains of functions together
• Computation never takes place unless a

result is used.

Concurrency:
• GHC (Haskell compiler) includes high

performance parallel garbage collector
• Light-weight concurrency library

18

Features

© Alex Ufkes, 2020, 2022

Haskell in Industry?

https://wiki.haskell.org/Haskell_in_industry

19© Alex Ufkes, 2020, 2022

Notable companies that use
or have used Haskell:
• Nvidia
• AT&T
• Ericsson
• Facebook
• Google
• Intel
• Microsoft

Typically, Haskell is used on
specialized internal projects
or research. Not necessarily
company-wide.

20© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 21

https://medium.com/@cardano.foundation/why-cardano-chose-haskell-and-why-
you-should-care-why-cardano-chose-haskell-and-why-you-should-f97052db2951

Installing Haskell:

https://www.haskell.org/

22© Alex Ufkes, 2020, 2022

https://www.haskell.org/documentation/

Haskell Documentation:

Neat!

23© Alex Ufkes, 2020, 2022

24© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 25

• Interactive shell, just like Elixir.
• Haskell’s is a bit nicer!

26© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 27

• Apparently WinGHCi doesn’t exist anymore
• Isn’t included in newer versions of Haskell.
• No matter, you can get a GHCi shell in a regular terminal:

• Define a main function.
• main() is the entry point

of a Haskell program
• Just like C or Java

28

Hello, World!

© Alex Ufkes, 2020, 2022

Notepad++ features Haskell
syntax highlighting!

Compilation is similar to gcc

29

Compiling Haskell

© Alex Ufkes, 2020, 2022

As with Elixir, we will play around in the
interactive shell until it becomes tedious.

30© Alex Ufkes, 2020, 2022

Operator precedence
is as expected

Division yields
floating point

31

Literals & Arithmetic

© Alex Ufkes, 2020, 2022

Like Elixir, can omit
brackets on function calls

^ can be used for
exponentiation

Representation error,
no escaping it.

32

Literals & Arithmetic

© Alex Ufkes, 2020, 2022

• Like Elixir, Haskell supports tuples.
• They need not contain the same types.

There are built in functions for accessing first
and second elements. Great for coordinates.

33

Tuples

© Alex Ufkes, 2020, 2022

fst and snd only
work on pair tuples!

34© Alex Ufkes, 2020, 2022

Must be homogeneous:

Integer literals get
inferred as floating point

Characters do not

35

Lists

© Alex Ufkes, 2020, 2022

Elements can be added to the beginning of a list with the cons (:) operator

Build a list using cons
operator and an empty list

In fact, when we write [1, 2, 3] the compiler is actually doing 1:2:3:[]
[1, 2, 3] notation is syntactic sugar.

36

Lists

© Alex Ufkes, 2020, 2022

Tuples can be heterogeneous; lists must be homogeneous.

However! We can have lists of tuples,
where each tuple is heterogeneous.

37

Lists & Tuples

© Alex Ufkes, 2020, 2022

Tuples can be heterogeneous, lists must be homogeneous.

However #2!
• In a list of tuples, each tuple

must have the same format:

38

Lists & Tuples

© Alex Ufkes, 2020, 2022

Strings are simply lists of chars:

We can cons chars into an
empty list to form a string

We can concatenate lists (and strings,
which are lists) using the ++ operator

39

Strings

© Alex Ufkes, 2020, 2022

Concatenate multiple types? Java lets us…

40

Strings

© Alex Ufkes, 2020, 2022

show() and read() functions

Convert non-string
argument to string

Read numeric value from a string (like sscanf in C)

Error when no numeric value is present

41

Strings

© Alex Ufkes, 2020, 2022

• In functional programming, computation
is done in large part by operating on lists.

• We saw the hd, tl, |, and Enum in Elixir.
• Haskell has a similar set of operations.

Three primary list-processing functions: map, filter, foldr (and foldl)

42

Operations on Lists

© Alex Ufkes, 2020, 2022

Same as Elixir:
• Head returns the first element
• Tail returns the rest, as a list
• Note boundary cases:

o Single element lists
o Empty lists

43

Head & Tail

© Alex Ufkes, 2020, 2022

Similar to Elixir’s Enum.map

• First class function, does what name suggests.
• Alphabetical characters are upped, everything

else is left the same.

Recall: map operates on lists, but a string is just a list of characters

44

map

© Alex Ufkes, 2020, 2022

Map takes two arguments: A function, and a list
of values to which the function is to be applied.

45

map

Similar to Elixir’s Enum.map

© Alex Ufkes, 2020, 2022

“Remove” items from a list based on some criteria:

Function List

46

filter

© Alex Ufkes, 2020, 2022

Replaces the cons operator with some other function. This takes some explaining.

Recall that the list:

[1, 2, 3, 4, 5]

Is actually seen as:

1:2:3:4:5:[]

By the compiler.

47

foldl, foldr

© Alex Ufkes, 2020, 2022

Replaces the cons operator with some other function. This takes some explaining.

Recall that the list:

[1, 2, 3, 4, 5]

Is actually seen as:

1:2:3:4:5:[]

By the compiler.

• foldr in effect replaces the cons operator
with another function of our choosing.

• This is similar to Enum.reduce in Elixir.
• The empty list is replaced with some initial

value.

48

foldl, foldr

© Alex Ufkes, 2020, 2022

• foldr in effect replaces the cons operator with
another function of our choosing.

• This is similar to Enum.reduce in Elixir.
• The empty list is replaced with some initial value.

foldr (+) 0 [1, 2, 3, 4, 5]

Three arguments: function, initial value, list

49

foldl, foldr

Replaces the cons operator with some other function. This takes some explaining.

© Alex Ufkes, 2020, 2022

foldr (+) 0 [1, 2, 3, 4, 5]

foldr (+) 0 1:2:3:4:5:[]

1 + 2 + 3 + 4 + 5 + 0

15
50

foldl, foldr

Replaces the cons operator with some other function. This takes some explaining.

© Alex Ufkes, 2020, 2022

foldr to perform factorial!

51

foldl, foldr

© Alex Ufkes, 2020, 2022

foldr is right associative. Meaning:

foldr (+) 0 [1, 2, 3, 4, 5]

1 + 2 + 3 + 4 + 5 + 0

Is actually:

(1 + (2 + (3 + (4 + (5 + 0)))))

Doesn’t matter for addition, but subtraction…

52

foldl VS foldr

© Alex Ufkes, 2020, 2022

foldr is right associative. Meaning:

foldr (-) 1 [4, 8, 5]

4 – 8 - 5 - 1

Is actually:

(4 - (8 - (5 - 1)))

0
53

foldl VS foldr

© Alex Ufkes, 2020, 2022

foldl is left associative. Meaning:

foldl (-) 1 [4, 8, 5]

1 - 4 – 8 - 5

Is actually:

(((1 - 4) – 8) - 5)

-16
54

foldl VS foldr

© Alex Ufkes, 2020, 2022

55

foldl VS foldr

© Alex Ufkes, 2020, 2022

Syntactic sugar:

List declaration: list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Can be written: list = [1..9]

Specify interval: list = [1,3..9]

= [1,3,5,7,9]

Interval is discerned from difference between first two elements

56

List Generation

© Alex Ufkes, 2020, 2022

Try it, but be ready
to interrupt

57

Infinite Lists?

© Alex Ufkes, 2020, 2022

Why? How?

Haskell is lazy!
• We bind x to the expression

to generate an infinite list.
• We don’t have to evaluate

this list to do so!
• Displaying the list, however,

requires evaluation.

58

Infinite Lists?

© Alex Ufkes, 2020, 2022

• Finding the length of the list
requires counting the elements.

• Be ready to interrupt.

• Grab first three elements of list
• Doesn’t matter if infinite, we’re

only evaluating first three items

59

Infinite Lists?

© Alex Ufkes, 2020, 2022

We’re allowed to perform operations on a finite subset of an infinite list.

• zip “zips” two lists together into tuples.
• If one list is finite, the other can be infinite.

60

Infinite Lists?

© Alex Ufkes, 2020, 2022

61© Alex Ufkes, 2020, 2022

As expected of a pure functional language, functions are central in Haskell

• If we’re compiling our
code into an executable,
we need a main.

• If we’re using the GHCi
shell, we don’t.

62

Functions in Haskell

© Alex Ufkes, 2020, 2022

Let’s start simple:

Define function called square
that takes one argument x

square computes x*x, where
x is the input argument

63

Functions in Haskell

© Alex Ufkes, 2020, 2022

Let’s start simple:

Invoke function square
in the typical fashion

64

Functions in Haskell

© Alex Ufkes, 2020, 2022

Parameter listFunction
named sum

Expression
to evaluate

65

Functions in Haskell

© Alex Ufkes, 2020, 2022

Passing in four args

66

Functions in Haskell

© Alex Ufkes, 2020, 2022

This is getting tedious to type interactively.

Let’s create a module!
• Similar to modules in Elixir
• We can load the module in GHCi
• Access its functions and expressions

67

Haskell Modules

© Alex Ufkes, 2020, 2022

68

Loading a Module

© Alex Ufkes, 2020, 2022

69© Alex Ufkes, 2020, 2022

When we make changes to Test
module, can reload with 1 click!

70© Alex Ufkes, 2020, 2022

71

Loading a Module

© Alex Ufkes, 2020, 2022

Use :load in terminal GHCi:

© Alex Ufkes, 2020, 2022 72

Control
Structures

if-then-else case let-in

• Brackets required around negative arguments
• Otherwise it thinks you’re subtracting 6 from f

73

if then else

Control Structures

© Alex Ufkes, 2020, 2022

• Here we have a function named
sign, that takes one argument x

• It returns:
o -1 if x is negative
o 1 if x is positive
o 0 if x is 0

• If/else construct in Haskell is
similar to most other languages.

• It must include a then and an else

74

Control Structures

if then else if then else

© Alex Ufkes, 2020, 2022

We can now format across multiple lines.
HOWEVER: Indentation matters in Haskell!

75

if then else if then else

Control Structures

© Alex Ufkes, 2020, 2022

76© Alex Ufkes, 2020, 2022

77© Alex Ufkes, 2020, 2022

Golden Rule:
Code which is part of some expression
should be indented further than the
beginning of that expression

https://en.wikibooks.org/wiki/Haskell/Indentation

78

Indenting in Haskell

© Alex Ufkes, 2020, 2022

If all that weren’t enough, Tabs don’t work
properly unless they’re 8 spaces exactly.

79© Alex Ufkes, 2020, 2022

When binding a name inside a function
or module, we use the “let” keyword

80

Local Names in Functions

© Alex Ufkes, 2020, 2022

• We now have two
expressions in this function!
• if/else and let

• Must add the do keyword

81

Multiple Expressions

© Alex Ufkes, 2020, 2022

82© Alex Ufkes, 2020, 2022

• When matching specific values, a
case construct is easier to write.

• Just like Elixir, the _ is wild. It catches
everything else.

83

Case Expression

© Alex Ufkes, 2020, 2022

84

Case Expression

© Alex Ufkes, 2020, 2022

Pattern Matching: Case

85© Alex Ufkes, 2020, 2022

Will never match!

Pattern Matching: Case

86© Alex Ufkes, 2020, 2022

87© Alex Ufkes, 2020, 2022

Try and be more general to catch
anything that isn’t a 3-tuple?

Unlike Elixir…

88© Alex Ufkes, 2020, 2022

Just like Elixir’s function signature pattern matching

Makes recursion very easy!
89

Piecewise Functions

© Alex Ufkes, 2020, 2022

• Return unit vector if point lies on axis
• Return input point otherwise

Piecewise Functions

90© Alex Ufkes, 2020, 2022

• Matches input arguments to x and y
• Guards denoted with |
• otherwise is the same as saying True

91

Functions: Guards

© Alex Ufkes, 2020, 2022

Built-in length function

Our own user function

92

Recursion

Classic list
length finder

© Alex Ufkes, 2020, 2022

Less important in Haskell
• In Haskell, function call model is different
• Function calls don’t necessarily create a

new stack frame
• In practice, tail recursion not a big deal.

Tail Recursion?

93© Alex Ufkes, 2020, 2022

Here we treat the input
argument as a pair containing
the head and tail of the list.

94

Recursion: cons

© Alex Ufkes, 2020, 2022

• Returns true if x >= 0
• False otherwise

• First argument is a Boolean function
• Second input is a list
• Base case is if the list is empty
• Otherwise, we call the function p with

the head of the list.

• If true, append it to the running list
• If false, do not append
• In both cases, make the recursive call

with the tail.
95

Recursion: filter

© Alex Ufkes, 2020, 2022

Test pos function

96

Recursion: filter

© Alex Ufkes, 2020, 2022

Lists/tuples to the rescue!

• Notice there is a lot of
duplicate computation here.

• Add a local variable?

97

Return Multiple Things?

© Alex Ufkes, 2020, 2022

• This is one expression (let/in)
• We don’t need to add do keyword

98

let/in Expression

© Alex Ufkes, 2020, 2022

99© Alex Ufkes, 2020, 2022

Use symbolic operators as functions:

Enclose in parentheses to
use in non-infix mode

100

Infix Functions

© Alex Ufkes, 2020, 2022

Can be written as:

In math, f ○ g means “f following g”. Same thing in Haskell.

101

Function Composition

© Alex Ufkes, 2020, 2022

Like anonymous functions in Elixir:

Square as Lambda function

Lambda function with two args

102

Lambda Functions

© Alex Ufkes, 2020, 2022

They don’t need names!

Return True no matter what

Return opposite of input

Good for passing as arguments when
that’s the only place you need them

103

Lambda Functions

© Alex Ufkes, 2020, 2022

Good for passing as arguments when that’s the only place you need them

Use with map, flip sign of list elements

104© Alex Ufkes, 2020, 2022

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial

Haskell Tutorials/References:

http://cheatsheet.codeslower.com/CheatSheet.pdf

105© Alex Ufkes, 2020, 2022

106© Alex Ufkes, 2020, 2022

