CPS506 - Comparative Programming Languages
Safety & Rust

Dr. Dave Mason
Department of Computer Science
Ryerson University

=
©2022 Dave Mason Ky

RYERSON
UNIVERSITY

@ economic costs

@ health and safety

@ personal information

@ exploits and compromises

https://creativecommons.org/licenses/by-nc-sa/4.0/

How Safety?

@ testing can only go so far

@ dynamically typed languages are “safe”

@ but static typing can provide more confidence
@ ultimate is proof of correctness

How Safe?

@ static language safety dependent on type system
@ “C” and “C++” are statically typed, but ...

e null pointer exceptions
@ memory corruption
e buffer overflows

@ want expressive power t0o
@ sometimes need all the performance you can get

@ need a safe systems-programming language
@ minimal, predictable overhead

@ strongly, statically typed

@ no “undefined behaviour” a la C or C++ specs
@ no data races

@ created at Mozilla - started 2010

@ version 1.0 in May 2015

@ Servo - browser currently at 100,000 LOC
@ Dropbox internals

@ Redox OS

Paradigm

imperative
safe side-effects - even for multi-threading

expressive type system
no accidental run-time costs

o
o
@ no mutable aliasing
o
o

Syntax Rules

@ literals
e numbers: (un)signed ints, floats —17
3.141592
1318
e characters: " a’ - Unicode

strings: "this isn’t \"hard\"!"
r###"raw string with 7 \ " #" ##""H#44

r#"useful for html <a href="fofof" & etc.

arrays: [1,2,3] [0;20]

slice: partofanarray - saf[..] &a[3..6]
tuples: (1, "abc™")
blocks/closures/lambdas:

Il 3

|larg| arg-delta

© names

upper/lower case, digits, underscore; case sensitive
arguments to methods and blocks

default immutable - mut keyword if needed
shake-case for variables/functions/parameters
camel-case for enum/struct/trait

© functions

."#

@ if
let mut x = 3;
if x == 5 {
x = 10
}
else {
x += 1
}
@ match
let x = 5;

match x {

1 => println! ("one"),

2 => println! ("two"),

3 => println! ("three"),

4 => println! ("four"),

5 => println! ("five"),
(

=> println! ("something else"),

}

@ while
let mut x = 5; // mut x: 132
let mut done = false; // mut done: bool

while !done {
X += x - 3;

println! ("{}", x);

if x % 5 == 0 {
done = true;
}
}
@ loop

@ iterators - inlined (ranges, vectors, etc.)

for (index, wvalue) in (5..10) .enumerate () {

println! ("index = {} and value = {}", index, value);
}
let lines = "hello\nworld".lines () ;
for (linenumber, line) in lines.enumerate () {

println! ("{}: {}", linenumber, line);

@ data containers

struct MyData {

}
impl MyData {

@ like Haskell type-classes

@ like Java interfaces - except not part of definition of base class
@ trait fraithname

@ impl for any types

trait Shape {
fn draw(&self, Surface);
fn bounding_ box (&self) —-> BoundingBox;

}
impl Shape for 132 {

struct Shape { ... }

impl Shape {
fn draw(&self, u32) { ... }
fn bounding_box (&self) -> BoundingBox { ... }
fn default () —-> &Self {

let s = Shape{}
s.draw (42)

@ no hierarchy
@ like Haskell type-classes

Memory Safety

@ no null pointers
e way to create null pointers
@ Option enumerated type
@ no dangling pointers

e value lifetimes are calculated

e Rule 1: Every value has a single owner at any given time. You can
move a value from one owner to another, but when a value’s owner
goes away, the value is freed along with it.

e Rule 2: You can borrow a reference to a value, so long as the
reference doesn’t outlive the value (or equivalently, its owner).
Borrowed references are temporary pointers; they allow you to
operate on values you don’t own.

e Rule 3: You can only modify a value when you have exclusive
access to it.

@ no memory leaks

e value lifetimes are calculated

e values freed when leave scope

e additionally, reference-counted values

@ no buffer overruns

@ Nno pointer arithmetic

e slices used for partial arrays

e arrays and slices are bounds-checked

Data Lifetimes

@ small data implements Copy trait

@ all arrays where element implements Copy trait
@ everything else is moved

@ assignment, parameter, result

fn make_vec () —-> Vec<i32> {
let mut vec = Vec::new();
vec.push (0) ;
vec.push (1) ;
// scope ends, ‘vec' is destroyed
vec // transfer ownership to the caller
}
fn print_vec (vec: &Vec<i32>) -> Vec<i32> {
// the ‘vec' parameter is part of this scope, hence owned by ‘print_vec®
// the ‘vec' parameter is borrowed for this scope
for 1 in vec.iter () {
println! ("{}", i)
}
// now, ‘vec' is deallocated
vec // now, pass ownership back
// now, borrow ends
}
fn use_vec () {
let vec = make_vec(); // take ownership of the vector
let vec = print_vec(&vec); // pass ownershiplend access to ‘print_vec®
// returned value is destroyed, as not used subsequently
for i in vec.iter() { // Erroneously continue usinguse returned

\ \

vec

println! ("{}", i * 2)
}

// scope ends, ‘vec' is destroyed

}

@ formally lifetimes of results are functions of parameter lifetimes
@ fn bar<’'a>(x: &’'a 132) —-> &'"a 132
@ lifetimes can sometimes be elided

struct Foo<’a> {
X: &'a 132,

fn main() {
let vy = &5; // same as ‘let _y
let £ = Foo { x: vy };

5;, let v = &_y;

~e

println! ("{}", f.x);
}

struct Foo<’a> {
X: &'a 132,

impl<’a> Foo<’a> {

@ Box<T> - heap allocated, moved

@ &«T and smut T - references

@ ~const T and xmut T - C-like references - unsafe
@ Rc - heap allocated immutable, clonable

@ not sendable

@ Cell<T> - mutable copy values

@ RefCell<T> - mutable non-copy values

@ usually used inside structs

@ removes some of the simultaneous update guarantees
@ not sendable

@ capture context

fn ten_times<F>(f: F) where F: Fn(i32) {
for index in 0..10 {
f (index) ;

let greeting = "hello";
ten_times (|Jj| println! ("{}, {}", greeting, 3Jj));

@ mod modname ;
@ mod modname { --- }

@ cargo
@ creates for library or executable

@ hygenic, matching

@ zero or more items,
zero or more methods,
an expression,
a statement, or

o
o
o
e a pattern.

let x: Vec<u32> = vec![1l, 2, 31;

let x: Vec<u32> = {
let mut temp_vec = Vec::new();
temp_vec.push (1) ;
temp_vec.push (2);
temp_vec.push (3) ;
temp_vec

b

macro_rules! vec {
(S $x:expr),x) => {

{

let mut temp_vec = Vec::new();

@ Arc<T> - heap allocated, clonable, sendable
@ Mutex<T> - heap allocated, locked
@ RwLock<T> - heap allocated, locked - read lock (multiple)

@ channels

@ mutex

@ condition variables

@ only types implementing Send can be sent or put in a Mutex
@ means type system prevents data races

@ occasionally need to reach under the covers
@ including building the Rust library
@ module or block can be declared unsafe to bypass type system

@ predictable, high performance

@ almost no run-time system required

@ native compilation

@ simple heap manager (no tracing or GC)
@ array/slice bounds checking

Evaluation

Zig

Simplicity

e Size of the grammar

e Type system

e complexity of navigating modules/classes
Orthogonality

e number of special syntax forms

e number of special datatypes
Extensibility

e functional
syntactically

defining literals
overloading

another safe systems-programming language (also Odin, D, Nim,
Jae)

minimal, predictable overhead - even more than Rust
statically typed, including array sizes

no “undefined behaviour” a la C or C++ specs

casts without unsafe

4 compilation models - Debug, ReleaseSafe, ReleaseSmall,
ReleaseFast

@ created by Andrew Kelly
@ version 0.10 in March 2022
@ Zig Foundation funding development of self-hosting 1.0

imperative

first-class types

compile-time interpreter

no accidental run-time costs

no allocation without passing an allocator

uses LLVM - dozens of targets (including wasm)

Syntax Rules

Q@ literals
e numbers: (un)signed ints, floats —17
3.141592 (comptime - no default size) Ras (156, 42)
e characters: " a’
e UTF-8 strings are u8 arrays: "this isn’t \"hard\"!"
e arrays: [1,2,3] [5]u8{’h’,’e’,"1","1","0"]
[_Ju8{'w","0",'x","1","d"]
@ slice: partofanarray-af0..] a[3..6]
e compile-time tuples (anonymous structs): . {1, "abc"}
@ names
e upper/lower case, digits, underscore; case sensitive
@"any thing!"
e arguments to methods and blocks
declarations: const or var - must be initialized (even if
undefined)
e all variables must be used (evenif _ = variable
@ snake_case for variables/parameters
e camelCase for functions
e PascalCase enum/struct

© functions
e fnname (pl1 :t1...) tr { expr}
@ fn foo(x: 132) i32 { return x }
Parsing

@ const is used for types, errors, “normal values”, modules

@ modules are structs lazily imported from files/build-environment
const expect = (@import ("std") .testing.expect;

@ values designated pub are visible to importers

@ code is only cursorily parsed unless it is needed - very fast
compile; lazy error detection; circular imports

@ generics are done with type arguments-to/return-from functions
@ no exceptions - errors or error-unions are return types for functions

@ if

const expect = @import ("std") .testing.expect;

test "1f statement" {

const a = true;
var x: ule = 0;
if (a) A
x += 1;
} else {
X += g
}
try expect(x == 1);
}
@ switch
test "switch statement" {
var x: 18 = 10;
switch (x) {
-1...1 => {
X = —-X;

}y

10, 100 => {
//special considerations must be made
//when dividing signed integers

@ while
test "while with continue expression" {
var sum: u8 = 0;
var i: u8 = 1;

while (i <= 10) : (i += 1) {
sum += 1i;
}
try expect (sum == 55);
}
@ while with payload capture

var numbers_left: u32 = 4;

fn eventuallyNullSequence () ?2u32 {
if (numbers_left == 0) return null;
numbers_left —-= 1;

return numbers_left;

test "while null capture" {
var sum: u32 = 0;
while (eventuallyNullSequence()) |value]| {
sum += value;

J/ar Cc: 154 = !y
trv expect (sum == 6): // 3 + 2 + 1

Optional types and lterators

@ struct type with a next function with an optional in its return type

@ returns null if no more values

const text = "robust, optimal, reusable, maintainable,
var iter = std.mem.split (u8, text, ", ");

try expect (egl (u8, iter.next().?, "robust"));

try expect (egl (u8, iter.next().?, "optimal"));

try expect (egl (u8, iter.next().?, "reusable"));

try expect (eql (u8, iter.next().?, "maintainable"));
try expect (egl (u8, iter.next().?, ""));

try expect (iter.next () == null);

const text = "robust, optimal, reusable, maintainable,
var iter = std.mem.split (u8, text, ", ");

var count : usize = 0;

while (iter.next()) |str| {

count += str.len;

}
try expectEqual (count, 33);

Structs

@ data containers
@ created by const declaration, or by function
@ contain constants, variables, functions

const Point = struct {
x: 132,
y: 132,

const Self = @This{();
pub fn new(x: 132, y: 132) Self {
return Point{.x = x, .y = v},
}
pub fn abs(self: Self) Self {
return new (if (self.x>=0) self.x else -self.x,
if (self.y>=0) self.y else -self.y);

}i

"w.

14

@ functions can have types as parameters and can return types

pub fn Point_ (comptime T: type) type {
return struct {
x: T,
y: T,
const Self = @This();
pub fn new(x: T, y: T) Self {
return .{.x = x, .y = VY,};
t
pub fn abs(self: Self) Self {
return new (if (self.x>=0) self.x else -self.x,
if (self.y>=0) self.y else -self.y);

bi
}
test "parametric point" {
const Point_i32 = Point_ (i32);
const pl = Point_1i32.new(3,-4);
try expectEqual (pl.abs(),Point_i32.new(3,4));

@ no exceptions
@ error returns
@ must be handled - catch or try

@ much weaker than Rust
@ null pointers
e but have to be recognized and dealt with
@ dangling pointers
e defer statement allows release adjacent to allocation
@ buffer overruns

e careful pointer arithmetic
e slices used for partial arrays
e arrays and slices are bounds-checked

@ just constant structs
@ @Qimport ("std") @import ("heap.zig")

@ NO macros
@ achieve similar ends with comptime first-class types

@ predictable, high performance

@ almost no run-time system required

@ native compilation

@ no automatic heap manager (no tracing or GC)

@ array/slice bounds checking in safe/debug compilation modes
@ undefined behaviour - detectable at compile time or run time

@ Simplicity

e Size of the grammar

e Type system

e complexity of navigating modules/classes
@ Orthogonality

e number of special syntax forms

e number of special datatypes
@ Extensibility

e functional

e syntactically

e defining literals
e overloading

	Safety
	Rust
	Zig

