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Notice!

Obligatory copyright notice in the age of digital 
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students 
registered in course C/CPS 506 can use this material for the purposes 
of this course but no other use is permitted, and there can be no sale 
or transfer or use of the work for any other purpose without explicit 
permission of Alex Ufkes.
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Course Administration (CCPS)

• Elixir labs due on Feb 27
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More Advanced Elixir:
• Enum & Stream
• Control flow, keyword lists
• List comprehensions
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This Week
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Let’s Get Started!
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A set of algorithms for enumeration over enumerables!

Enum.all?
# Entire collection must evaluate to true for a given condition

Enum.any?
# Any value in the collection must evaluate true

Enum.map
# Apply a function to every element in the collection

Enum applies functions to lists in various ways. We will see a few:

More: https://elixirschool.com/en/lessons/basics/enum/

Enum
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Entire collection must evaluate to true for a given condition

Pass list as first arg Anon function 
as second arg

Enum.all?
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Tail recursive!

• and the function result with the 
running Boolean result.

• If we hit an element for which f.(h)
is false, the entire running Boolean 
becomes false.

Enum.all? We can do it!
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Enum.all? We can do it!
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Enum.all? Short Circuit?
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defmodule MyEnum do
def all(list, f) do all(list, f, true) end
defp all(_, _, false) do false end
defp all([], _, res) do res end
defp all([h|t], f, res) do all(t, f, f.(h) and res) end

end

• No need to continue if res becomes false.
• false and anything = false
• Can also make tail recursive functions private



Any value in collection must evaluate to true for a given condition

Enum.any?
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Very similar to MyEnum.all
• Initialize res to false
• Any true value from function f 

will turn result true.
• We are ORing instead of ANDing

Enum.any? We can do it!
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Enum.any? We can do it!
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Enum.any? Short Circuit?
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defmodule MyEnum do
def all(list, f) do all(list, f, false) end
defp all(_, _, true) do true end
defp all([], _, res) do res end
defp all([h|t], f, res) do all(t, f, f.(h) or res) end

end



Very useful! Apply a function to every element

Enum.map
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• Result initialized as an empty list
• Concatenate [f.(h)] to the 

running result list

Enum.map: We can do it!
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Enum.map: We can do it!
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Enum.map: We can do it!
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Distill collection to single value based on some function

• acc is the running value
• By default, initialized to first element in list
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Enum.reduce
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Distill collection to single value based on some function

(9 - (8 - (7 - (6 - (5 - (4 - (3 - (2 - (1 – acc)…)
VS

(…(acc – 1) – 2) – 3) – 4) – 5) – 6) – 7) – 8) – 9)
21

Enum.reduce
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• Result initialized as head of list
• Pass head of list and current 

result into f
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Enum.reduce: We can do it!
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Enum.reduce: We can do it!
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• acc is the running value
• By default, initialized to first element in list

We can add an optional 3rd argument to initialize acc:

iex> Enum.reduce([1, 2, 3], 10, fn(x, acc) -> x+acc end) 
16
iex> Enum.reduce([1, 2, 3], fn(x, acc) -> x+acc end) 
6

10 + 1 + 2 + 3
VS

1 + 2 + 3
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Stream
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Like Enum, but Streams are lazy!

• Enum functions are strict/eager. 
• The result of an Enum is the list that results from applying it:

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Enum.map(list, &(&1 + 1))
[2, 3, 4, 5, 6]

Streams
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• Stream and Enum share many functions.
• What is the result of evaluating Stream.map?

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Stream.map(list, &(&1 + 1))
#Stream<[

enum: [1, 2, 3, 4, 5],
funs: [#Function<48.103564624/1 in Stream.map/2>]

]>

Streams

Like Enum, but Streams are lazy!

27© Alex Ufkes, 2020, 2022



iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Stream.map(list, &(&1 + 1))
#Stream<[

enum: [1, 2, 3, 4, 5],
funs: [#Function<48.103564624/1 in Stream.map/2>]

]>

• That’s not a list! Stream is its own type.
• Think of a stream as a recipe for producing the transformed list.
• Here, our stream is a recipe for adding 1 to every element.
• We haven’t actually done the cooking!
• Why is this useful?
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Consider the following script:

list = [1, 2, 3, 4, 5]
r1 = Enum.map(list, &(&1 + 1)) |>

Enum.map(&(&1 * 3)) |>
Enum.map(&(&1 / 2))

An aside: Pipe is useful here! 
• Output list from Enum piped 

into next call as 1st arg.
• Thus, subsequent Enum calls 

only have 1 arg.

How many new lists are created when we evaluate this?

One for each Enum call! Very inefficient.

Streams
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list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Stream.map(&(&1 / 2))

• r1 is a recipe for a new list
• At this point, no new list(s) 

have been created!

list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Enum.map(&(&1 / 2))

• If we finish with an Enum
call, the stream is applied.

• Only one new list created

Streams
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list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Stream.map(&(&1 / 2))

Enum.to_list(r1)

Can also use Enum.to_list

Apply the Stream?
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Lots more: https://hexdocs.pm/elixir/Stream.html
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Control “Structures”
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Implemented using function calls and pattern matching
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Selection: if/else
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Why?

As long as this expressions evaluates to true or false
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Boolean:
true, false

&&, ||, !

With these operators: 
• non-false and non-nil are true. 
• nil and false are false.
• 0 is considered true!

iex> "gh" && false
false

iex> "gh" || false
"gh"

Except…
• The result isn’t true or false
• It’s the value that decided 

the result of true or false
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Boolean Expressions

What we actually get is the value that determined the 
truthiness of the expression



“No loop/if-else/case constructs”

In Elixir, we have several control structures that are implemented as macros. 
They are not actually constructs of the programming language.

Their implementation exists in the Elixir Kernel module.

They allow us to write if/else-style constructs in a familiar way. 
However, these are function calls behind the scenes.
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if 1 < 2 do
“Hello” 

end

Is the same as: if 1 < 2, do: “Hello”

Is the same as: if(1 < 2, do: “Hello”)

This form is a syntactic convenience allowed by 
Elixir to make the language more accessible.

© Alex Ufkes, 2020, 2022 41

do/end VS Keyword List



if 1 < 2 do
“Hello”

else
“World” 

end

Is the same as:

if 1 < 2, do: “Hello”, else: “World” 

Is the same as:

if(1 < 2, do: “Hello”, else: “World”) 

iex> if 1 < 2, do: "Hello", else: "World"
"Hello"
iex> if(1 < 2, do: "Hello", else: "World")
"Hello"
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do/end VS Keyword List



Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}]) 

do/end VS Keyword List

Is the same as:

if(1 < 2, do: “Hello”, else: “World”) 

if 1 < 2 do
“Hello”

else
“World” 

end
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if(1<2, [{:do, "Hello"}, {:else, "World"}]) 
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Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}]) 

iex> if 1 < 2, do: "Hello", else: "World"
"Hello"

iex> if(1 < 2, [{:do, "Hello”}, {:else, "World"}])
"Hello"

do/end VS Keyword List

if 1 < 2 do
“Hello”

else
“World” 

end

Is the same as:

if 1 < 2, do: “Hello”, else: “World” 
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iex> if(1 < 2, [{:do, IO.puts "Hello"}, {:else, "World"}])
Hello
:ok

iex>

Can be any expression!
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unless is_integer("hello") do 
"Not an Int" 

end

iex> unless(is_integer("hello"), do: "Not an Int")
"Not an Int"

iex> unless(is_integer("hello"), [{:do, "Not an Int"}])
"Not an Int"

unless
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unless is_integer(0b10101) do 
"Not an Int" 

else
"An Int" 

end

"An Int"

unless: With an else
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if and unless can’t handle pattern matching gracefully:

• Matching returns the right-hand side...
• UNLESS no match is found, then it yields 

a MatchError.
• If a match is found we’d be OK – [1, 2, 3] 

is true (non-nil, non-false)

We can never get here!
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case



tup = {:ok, "Hello World"}
case tup do

{:ok, result} -> result 
{:error} -> "Uh oh!"
_ -> "Catch all"

end

Without a catch-all, we’d get an 
error if no match was found.

{:ok, result} = {:ok, "Hello World"}

Pattern match!

{:error} = {:ok, "Hello World"}

_ = {:ok, "Hello World"}
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case
Match this tuple successively 

with each case:
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Comment out 
catch all case
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pi = 3.14 
IO.puts pi

case "apple pie" do 
pi -> IO.puts "Tasty " <> pi 
_ -> IO.puts "#{pi} is not tasty" 

end

What prints?

Attempts to match: pi = “apple pie”
• What’s the problem here?
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case: Matching Variables



© Alex Ufkes, 2020, 2022 56

Pin pi using ^



Guard reference: https://hexdocs.pm/elixir/master/guards.html
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Guard Clauses

Place a condition on the match:
• In this case, match is only successful if x < 0
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Guard Clauses

Guard reference: https://hexdocs.pm/elixir/master/guards.html



case is for pattern matching, cond is for conditions:
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cond

Evaluating cond:
• We say y=cond …
• Cond evaluates to the final expression 

under the first true condition.
• Similar to a block in Smalltalk
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cond: Always have a catch-all
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List Comprehensions

for: 

• Generating 
• Filtering 
• Operating 

Produces a list when it’s done!

Not the same as an imperative-style for loop!

Not for general purpose iteration.
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List Comprehensions

Very much like comprehensions in Python:

Three parts:
• Generator
• Filter
• Collector

Comprehensions can be used to do things that we could 
otherwise do with Enum or recursive functions
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List Comprehensions

iex> Enum.map([1, 2, 3, 4], &(&1*&1))
[1, 4, 9, 16]

iex> for n <- [1, 2, 3, 4], do: n*n
[1, 4, 9, 16]

Generator: Any enumerable
• In this case, a plain old list
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List Comprehensions

iex> Enum.map([1, 2, 3, 4], &(&1*&1))
[1, 4, 9, 16]

iex> for n <- [1, 2, 3, 4], do: n*n
[1, 4, 9, 16]

iex> for n <- 1..4, do: n*n
[1, 4, 9, 16]

• Used to produce list [1, 2, 3, 4]
• Can generate large lists this way
• Note: 1..4 is NOT itself a list!
• It is a Range
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List Comprehensions

iex> for n <- 1..4, do: n*n
[1, 4, 9, 16]

• List comprehensions produce lists
• Generators like the above are lazy (Range)
• Operate on elements one at a time, 

discarding previous.
• That is, at no point do we produce the 

complete list [1, 2, 3, 4] in memory.

https://hexdocs.pm/elixir/Range.html
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List Comprehensions: Pattern Matching

iex> vals = [good: 1, good: 2, bad: 3, good: 4]

Keyword list!

iex> vals = [{:good, 1}, {:good, 2}, {:bad, 3}, {:good, 4}]
[good: 1, good: 2, bad: 3, good: 4]
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List Comprehensions: Pattern Matching

iex> vals = [good: 1, good: 2, bad: 3, good: 4]
[good: 1, good: 2, bad: 3, good: 4]

iex> for {:good, n} <- vals, do: n*n
[1, 4, 16]

• Pattern matching is powerful
• We can also filter in a Boolean fashion
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List Comprehensions: Filtering

iex> fun = &(rem(&1, 3) == 0)
#Function<6.99386804/1 in :erl_eval.expr/5>

iex> for n <- 1..20, fun.(n), do: n
[3, 6, 9, 12, 15, 18]

Filter is optional
• Include it after generator if desired
• Only elements that evaluate to true when 

filtered will make it to the do: block
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List Comprehensions: Filtering & Matching

iex> list = [a: 1, b: "2", a: 3.0, a: "4.0", b: {5}, a: ["6.0"]]
[a: 1, b: "2", a: 3.0, a: "4.0", b: {5}, a: ["6.0"]]

iex> for {:a, n} <- list, is_number(n), do: n
[1, 3.0]

Nothing semantically new here
• Anything we can do with comprehensions we can 

do with Enum or our own functions.
• It might require more syntax, but we can do it.
• Comprehensions can be used to create concise code
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List Comprehensions: In 2D?

iex> for i <- [:a, :b, :c], j <- [1, 2], do:  {i, j}
[a: 1, a: 2, b: 1, b: 2, c: 1, c: 2]

We get a keyword list containing combinations 
of all elements from both generators
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Elixir Processes (In Brief):

• Elixir code runs inside lightweight threads of execution.
o Isolated, exchange information via message passing.

• Not uncommon to have hundreds of thousands of 
processes running concurrently in same VM.
o Note: These are NOT operating system processes!
o Extremely lightweight in terms of CPU and memory
o A process need not be an expensive resource

Elixir is built on a process model. Recall:
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Elixir Processes

Playing with processes:
• self() Returns PID of current process.

o In this case, it’s the PID of our interactive shell session
• Process.alive?() tests if a process is currently active.
• We can spawn functions as processes!
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Elixir Processes

• spawn takes a function as 
an argument and returns 
its PID once spawned.

• Function executes when 
spawned

Process is not active, the function 
is not currently executing
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Elixir Processes: Send & Receive

iex> send(self(), {:Hello, “World”})
{:Hello, "World"}

• send/2 can be used to send a message to a process (by PID)
• This message goes into a mailbox and can be received using the 

receive/1 function (or using its macro syntax form, as we will)
• When invoking receive, it will go through the messages in the mailbox 

and attempt to match the messages with the provided patterns
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Elixir Processes: Send & Receive

iex> send(self(), {:Hello, “World”})
{:Hello, "World"}

iex> receive do
...>   {:Hello, msg} -> msg
...>   {:World, msg} -> "won't match"
...> end

"World"
iex>

• Once the message is received, it is consumed!
• We can’t receive the same message twice.
• Subsequent receive calls will be blocking
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Elixir Processes: Send & Receive
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Elixir Processes: Send & Receive

Receive is blocking!
• We sent one message and received it.
• We then try and receive again, but the 

mailbox is empty.
• Process sits and waits.
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Elixir Processes: Send & Receive
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Elixir Processes: Send & Receive

• Spawning a function as a process 
executes that function.

• A blocking receive can be used to 
wait for messages.

• Once the function receives a 
message, it will pattern match.

• Receive only blocks once! We must 
spawn the function three times.

• Different order?
• Execution is interleaved.
• Up to scheduler.
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Elixir Processes: Send & Receive

• Spawn all three, send each a message.
• Which child process gets chosen to 

execute is up to the scheduler.
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Elixir Processes

• This has been a taste. There’s lots more.
• Elixir is famous for powerful concurrent processing.
• Processes can be used to emulate the object message 

passing model in languages like Smalltalk.
• If you understand a bit about concurrency from 209 

or 590, check it out.

https://elixir-lang.org/getting-started/processes.html
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Functions: First-class entities
o Create and pass anonymous functions as arguments
o Return anonymous functions as values
Immutable data: Variables are bound and matched using =
o Collections are not modified.
o Enum.map returns a new collection
Recursion: Repetition accomplished with tail-recursion.
o Enum functions work this way behind the scenes

Functional Programming & Elixir
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We saw:



Control flow is not built into the language as syntax constructs

• Selection and branching are implemented as functions
• Operate using keyword lists and pattern matching

Functional Programming & Elixir
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Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}]) 

Is the same as:

if(1 < 2, do: “Hello”, else: “World”) 

if 1 < 2 do
“Hello”

else
“World” 

end



• Dynamically typed 
o Type inferred at run-time
o Need not explicitly specify type upon declaration

• Provides syntax conveniences to make it more intuitive to 
programmers accustomed to imperative languages

• Interactive shell provides help/search functionality

https://media.pragprog.com/titles/elixir/ElixirCheat.pdf

Elixir Syntax
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Reserved words
• true, false, nil

o Used as atoms
• when, and, or, not, in

o Used as operators
• fn

o Used for anonymous function definitions
• do, end, catch, rescue, after, else

o Used in do/end blocks

https://github.com/elixir-lang/elixir/blob/master/lib/elixir/pages/Syntax%20Reference.md

Elixir Syntax
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https://elixir-lang.org/getting-started/introduction.html

https://elixirschool.com/en/lessons/basics/basics/

Further Reading
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Elixir Popularity
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https://techbeacon.com/5-emerging-programming-languages-bright-future

This list also includes Rust!

Elixir Popularity
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More Advanced Elixir:
• Control flow, keyword lists
• Enum VS Stream
• List comprehensions
• Elixir processes
• Elixir sendoff
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In Summary
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