
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 5: Control flow, Enum VS Stream, comprehensions

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

3

Course Administration (CCPS)

• Elixir labs due on Feb 27

© Alex Ufkes, 2020, 2022

More Advanced Elixir:
• Enum & Stream
• Control flow, keyword lists
• List comprehensions

4

This Week

© Alex Ufkes, 2020, 2022

5

Let’s Get Started!

© Alex Ufkes, 2020, 2022

Enum
6© Alex Ufkes, 2020, 2022

A set of algorithms for enumeration over enumerables!

Enum.all?
Entire collection must evaluate to true for a given condition

Enum.any?
Any value in the collection must evaluate true

Enum.map
Apply a function to every element in the collection

Enum applies functions to lists in various ways. We will see a few:

More: https://elixirschool.com/en/lessons/basics/enum/

Enum

7© Alex Ufkes, 2020, 2022

Entire collection must evaluate to true for a given condition

Pass list as first arg Anon function
as second arg

Enum.all?

8© Alex Ufkes, 2020, 2022

Tail recursive!

• and the function result with the
running Boolean result.

• If we hit an element for which f.(h)
is false, the entire running Boolean
becomes false.

Enum.all? We can do it!

9© Alex Ufkes, 2020, 2022

Enum.all? We can do it!

10© Alex Ufkes, 2020, 2022

Enum.all? Short Circuit?

11© Alex Ufkes, 2020, 2022

defmodule MyEnum do
def all(list, f) do all(list, f, true) end
defp all(_, _, false) do false end
defp all([], _, res) do res end
defp all([h|t], f, res) do all(t, f, f.(h) and res) end

end

• No need to continue if res becomes false.
• false and anything = false
• Can also make tail recursive functions private

Any value in collection must evaluate to true for a given condition

Enum.any?

12© Alex Ufkes, 2020, 2022

Very similar to MyEnum.all
• Initialize res to false
• Any true value from function f

will turn result true.
• We are ORing instead of ANDing

Enum.any? We can do it!

13© Alex Ufkes, 2020, 2022

Enum.any? We can do it!

14© Alex Ufkes, 2020, 2022

Enum.any? Short Circuit?

15© Alex Ufkes, 2020, 2022

defmodule MyEnum do
def all(list, f) do all(list, f, false) end
defp all(_, _, true) do true end
defp all([], _, res) do res end
defp all([h|t], f, res) do all(t, f, f.(h) or res) end

end

Very useful! Apply a function to every element

Enum.map

16© Alex Ufkes, 2020, 2022

• Result initialized as an empty list
• Concatenate [f.(h)] to the

running result list

Enum.map: We can do it!

17© Alex Ufkes, 2020, 2022

Enum.map: We can do it!

18© Alex Ufkes, 2020, 2022

Enum.map: We can do it!

19© Alex Ufkes, 2020, 2022

Distill collection to single value based on some function

• acc is the running value
• By default, initialized to first element in list

20

Enum.reduce

© Alex Ufkes, 2020, 2022

Distill collection to single value based on some function

(9 - (8 - (7 - (6 - (5 - (4 - (3 - (2 - (1 – acc)…)
VS

(…(acc – 1) – 2) – 3) – 4) – 5) – 6) – 7) – 8) – 9)
21

Enum.reduce

© Alex Ufkes, 2020, 2022

• Result initialized as head of list
• Pass head of list and current

result into f

22

Enum.reduce: We can do it!

© Alex Ufkes, 2020, 2022

23

Enum.reduce: We can do it!

© Alex Ufkes, 2020, 2022

• acc is the running value
• By default, initialized to first element in list

We can add an optional 3rd argument to initialize acc:

iex> Enum.reduce([1, 2, 3], 10, fn(x, acc) -> x+acc end)
16
iex> Enum.reduce([1, 2, 3], fn(x, acc) -> x+acc end)
6

10 + 1 + 2 + 3
VS

1 + 2 + 3

24© Alex Ufkes, 2020, 2022

Stream
25© Alex Ufkes, 2020, 2022

Like Enum, but Streams are lazy!

• Enum functions are strict/eager.
• The result of an Enum is the list that results from applying it:

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Enum.map(list, &(&1 + 1))
[2, 3, 4, 5, 6]

Streams

26© Alex Ufkes, 2020, 2022

• Stream and Enum share many functions.
• What is the result of evaluating Stream.map?

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Stream.map(list, &(&1 + 1))
#Stream<[

enum: [1, 2, 3, 4, 5],
funs: [#Function<48.103564624/1 in Stream.map/2>]

]>

Streams

Like Enum, but Streams are lazy!

27© Alex Ufkes, 2020, 2022

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> Stream.map(list, &(&1 + 1))
#Stream<[

enum: [1, 2, 3, 4, 5],
funs: [#Function<48.103564624/1 in Stream.map/2>]

]>

• That’s not a list! Stream is its own type.
• Think of a stream as a recipe for producing the transformed list.
• Here, our stream is a recipe for adding 1 to every element.
• We haven’t actually done the cooking!
• Why is this useful?

28© Alex Ufkes, 2020, 2022

Consider the following script:

list = [1, 2, 3, 4, 5]
r1 = Enum.map(list, &(&1 + 1)) |>

Enum.map(&(&1 * 3)) |>
Enum.map(&(&1 / 2))

An aside: Pipe is useful here!
• Output list from Enum piped

into next call as 1st arg.
• Thus, subsequent Enum calls

only have 1 arg.

How many new lists are created when we evaluate this?

One for each Enum call! Very inefficient.

Streams

29© Alex Ufkes, 2020, 2022

list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Stream.map(&(&1 / 2))

• r1 is a recipe for a new list
• At this point, no new list(s)

have been created!

list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Enum.map(&(&1 / 2))

• If we finish with an Enum
call, the stream is applied.

• Only one new list created

Streams

30© Alex Ufkes, 2020, 2022

31© Alex Ufkes, 2020, 2022

list = [1, 2, 3, 4, 5]
r1 = Stream.map(list, &(&1 + 1)) |>

Stream.map(&(&1 * 3)) |>
Stream.map(&(&1 / 2))

Enum.to_list(r1)

Can also use Enum.to_list

Apply the Stream?

32© Alex Ufkes, 2020, 2022

Lots more: https://hexdocs.pm/elixir/Stream.html

33© Alex Ufkes, 2020, 2022

Control “Structures”

© Alex Ufkes, 2020, 2022 34

Implemented using function calls and pattern matching

© Alex Ufkes, 2020, 2022 35

Selection: if/else

© Alex Ufkes, 2020, 2022 36

Why?

As long as this expressions evaluates to true or false

© Alex Ufkes, 2020, 2022 37

Boolean:
true, false

&&, ||, !

With these operators:
• non-false and non-nil are true.
• nil and false are false.
• 0 is considered true!

iex> "gh" && false
false

iex> "gh" || false
"gh"

Except…
• The result isn’t true or false
• It’s the value that decided

the result of true or false

© Alex Ufkes, 2020, 2022 38

Boolean Expressions

What we actually get is the value that determined the
truthiness of the expression

“No loop/if-else/case constructs”

In Elixir, we have several control structures that are implemented as macros.
They are not actually constructs of the programming language.

Their implementation exists in the Elixir Kernel module.

They allow us to write if/else-style constructs in a familiar way.
However, these are function calls behind the scenes.

© Alex Ufkes, 2020, 2022 39

© Alex Ufkes, 2020, 2022 40

?

if 1 < 2 do
“Hello”

end

Is the same as: if 1 < 2, do: “Hello”

Is the same as: if(1 < 2, do: “Hello”)

This form is a syntactic convenience allowed by
Elixir to make the language more accessible.

© Alex Ufkes, 2020, 2022 41

do/end VS Keyword List

if 1 < 2 do
“Hello”

else
“World”

end

Is the same as:

if 1 < 2, do: “Hello”, else: “World”

Is the same as:

if(1 < 2, do: “Hello”, else: “World”)

iex> if 1 < 2, do: "Hello", else: "World"
"Hello"
iex> if(1 < 2, do: "Hello", else: "World")
"Hello"

© Alex Ufkes, 2020, 2022 42

do/end VS Keyword List

Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}])

do/end VS Keyword List

Is the same as:

if(1 < 2, do: “Hello”, else: “World”)

if 1 < 2 do
“Hello”

else
“World”

end

© Alex Ufkes, 2020, 2022 43

if(1<2, [{:do, "Hello"}, {:else, "World"}])

© Alex Ufkes, 2020, 2022 44

Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}])

iex> if 1 < 2, do: "Hello", else: "World"
"Hello"

iex> if(1 < 2, [{:do, "Hello”}, {:else, "World"}])
"Hello"

do/end VS Keyword List

if 1 < 2 do
“Hello”

else
“World”

end

Is the same as:

if 1 < 2, do: “Hello”, else: “World”

© Alex Ufkes, 2020, 2022 45

iex> if(1 < 2, [{:do, IO.puts "Hello"}, {:else, "World"}])
Hello
:ok

iex>

Can be any expression!

© Alex Ufkes, 2020, 2022 46

unless is_integer("hello") do
"Not an Int"

end

iex> unless(is_integer("hello"), do: "Not an Int")
"Not an Int"

iex> unless(is_integer("hello"), [{:do, "Not an Int"}])
"Not an Int"

unless

© Alex Ufkes, 2020, 2022 47

unless is_integer(0b10101) do
"Not an Int"

else
"An Int"

end

"An Int"

unless: With an else

© Alex Ufkes, 2020, 2022 48

if and unless can’t handle pattern matching gracefully:

• Matching returns the right-hand side...
• UNLESS no match is found, then it yields

a MatchError.
• If a match is found we’d be OK – [1, 2, 3]

is true (non-nil, non-false)

We can never get here!

© Alex Ufkes, 2020, 2022 49

case

tup = {:ok, "Hello World"}
case tup do

{:ok, result} -> result
{:error} -> "Uh oh!"
_ -> "Catch all"

end

Without a catch-all, we’d get an
error if no match was found.

{:ok, result} = {:ok, "Hello World"}

Pattern match!

{:error} = {:ok, "Hello World"}

_ = {:ok, "Hello World"}

© Alex Ufkes, 2020, 2022 50

case
Match this tuple successively

with each case:

© Alex Ufkes, 2020, 2022 51

© Alex Ufkes, 2020, 2022 52

© Alex Ufkes, 2020, 2022 53

Comment out
catch all case

© Alex Ufkes, 2020, 2022 54

pi = 3.14
IO.puts pi

case "apple pie" do
pi -> IO.puts "Tasty " <> pi
_ -> IO.puts "#{pi} is not tasty"

end

What prints?

Attempts to match: pi = “apple pie”
• What’s the problem here?

© Alex Ufkes, 2020, 2022 55

case: Matching Variables

© Alex Ufkes, 2020, 2022 56

Pin pi using ^

Guard reference: https://hexdocs.pm/elixir/master/guards.html

© Alex Ufkes, 2020, 2022 57

Guard Clauses

Place a condition on the match:
• In this case, match is only successful if x < 0

© Alex Ufkes, 2020, 2022 58

Guard Clauses

Guard reference: https://hexdocs.pm/elixir/master/guards.html

case is for pattern matching, cond is for conditions:

© Alex Ufkes, 2020, 2022 59

cond

Evaluating cond:
• We say y=cond …
• Cond evaluates to the final expression

under the first true condition.
• Similar to a block in Smalltalk

© Alex Ufkes, 2020, 2022 60

© Alex Ufkes, 2020, 2022 61

cond: Always have a catch-all

62

List Comprehensions

for:

• Generating
• Filtering
• Operating

Produces a list when it’s done!

Not the same as an imperative-style for loop!

Not for general purpose iteration.

© Alex Ufkes, 2020, 2022

63

List Comprehensions

Very much like comprehensions in Python:

Three parts:
• Generator
• Filter
• Collector

Comprehensions can be used to do things that we could
otherwise do with Enum or recursive functions

© Alex Ufkes, 2020, 2022

64

List Comprehensions

iex> Enum.map([1, 2, 3, 4], &(&1*&1))
[1, 4, 9, 16]

iex> for n <- [1, 2, 3, 4], do: n*n
[1, 4, 9, 16]

Generator: Any enumerable
• In this case, a plain old list

© Alex Ufkes, 2020, 2022

65

List Comprehensions

iex> Enum.map([1, 2, 3, 4], &(&1*&1))
[1, 4, 9, 16]

iex> for n <- [1, 2, 3, 4], do: n*n
[1, 4, 9, 16]

iex> for n <- 1..4, do: n*n
[1, 4, 9, 16]

• Used to produce list [1, 2, 3, 4]
• Can generate large lists this way
• Note: 1..4 is NOT itself a list!
• It is a Range

© Alex Ufkes, 2020, 2022

66© Alex Ufkes, 2020, 2022

67

List Comprehensions

iex> for n <- 1..4, do: n*n
[1, 4, 9, 16]

• List comprehensions produce lists
• Generators like the above are lazy (Range)
• Operate on elements one at a time,

discarding previous.
• That is, at no point do we produce the

complete list [1, 2, 3, 4] in memory.

https://hexdocs.pm/elixir/Range.html

© Alex Ufkes, 2020, 2022

68

List Comprehensions: Pattern Matching

iex> vals = [good: 1, good: 2, bad: 3, good: 4]

Keyword list!

iex> vals = [{:good, 1}, {:good, 2}, {:bad, 3}, {:good, 4}]
[good: 1, good: 2, bad: 3, good: 4]

© Alex Ufkes, 2020, 2022

69

List Comprehensions: Pattern Matching

iex> vals = [good: 1, good: 2, bad: 3, good: 4]
[good: 1, good: 2, bad: 3, good: 4]

iex> for {:good, n} <- vals, do: n*n
[1, 4, 16]

• Pattern matching is powerful
• We can also filter in a Boolean fashion

© Alex Ufkes, 2020, 2022

70

List Comprehensions: Filtering

iex> fun = &(rem(&1, 3) == 0)
#Function<6.99386804/1 in :erl_eval.expr/5>

iex> for n <- 1..20, fun.(n), do: n
[3, 6, 9, 12, 15, 18]

Filter is optional
• Include it after generator if desired
• Only elements that evaluate to true when

filtered will make it to the do: block

© Alex Ufkes, 2020, 2022

71

List Comprehensions: Filtering & Matching

iex> list = [a: 1, b: "2", a: 3.0, a: "4.0", b: {5}, a: ["6.0"]]
[a: 1, b: "2", a: 3.0, a: "4.0", b: {5}, a: ["6.0"]]

iex> for {:a, n} <- list, is_number(n), do: n
[1, 3.0]

Nothing semantically new here
• Anything we can do with comprehensions we can

do with Enum or our own functions.
• It might require more syntax, but we can do it.
• Comprehensions can be used to create concise code

© Alex Ufkes, 2020, 2022

72

List Comprehensions: In 2D?

iex> for i <- [:a, :b, :c], j <- [1, 2], do: {i, j}
[a: 1, a: 2, b: 1, b: 2, c: 1, c: 2]

We get a keyword list containing combinations
of all elements from both generators

© Alex Ufkes, 2020, 2022

73

Elixir Processes (In Brief):

• Elixir code runs inside lightweight threads of execution.
o Isolated, exchange information via message passing.

• Not uncommon to have hundreds of thousands of
processes running concurrently in same VM.
o Note: These are NOT operating system processes!
o Extremely lightweight in terms of CPU and memory
o A process need not be an expensive resource

Elixir is built on a process model. Recall:

© Alex Ufkes, 2020, 2022

74

Elixir Processes

Playing with processes:
• self() Returns PID of current process.

o In this case, it’s the PID of our interactive shell session
• Process.alive?() tests if a process is currently active.
• We can spawn functions as processes!

© Alex Ufkes, 2020, 2022

75

Elixir Processes

• spawn takes a function as
an argument and returns
its PID once spawned.

• Function executes when
spawned

Process is not active, the function
is not currently executing

© Alex Ufkes, 2020, 2022

76

Elixir Processes: Send & Receive

iex> send(self(), {:Hello, “World”})
{:Hello, "World"}

• send/2 can be used to send a message to a process (by PID)
• This message goes into a mailbox and can be received using the

receive/1 function (or using its macro syntax form, as we will)
• When invoking receive, it will go through the messages in the mailbox

and attempt to match the messages with the provided patterns

© Alex Ufkes, 2020, 2022

77

Elixir Processes: Send & Receive

iex> send(self(), {:Hello, “World”})
{:Hello, "World"}

iex> receive do
...> {:Hello, msg} -> msg
...> {:World, msg} -> "won't match"
...> end

"World"
iex>

• Once the message is received, it is consumed!
• We can’t receive the same message twice.
• Subsequent receive calls will be blocking

© Alex Ufkes, 2020, 2022

78

Elixir Processes: Send & Receive

© Alex Ufkes, 2020, 2022

79

Elixir Processes: Send & Receive

Receive is blocking!
• We sent one message and received it.
• We then try and receive again, but the

mailbox is empty.
• Process sits and waits.

© Alex Ufkes, 2020, 2022

80

Elixir Processes: Send & Receive

© Alex Ufkes, 2020, 2022

81

Elixir Processes: Send & Receive

• Spawning a function as a process
executes that function.

• A blocking receive can be used to
wait for messages.

• Once the function receives a
message, it will pattern match.

• Receive only blocks once! We must
spawn the function three times.

• Different order?
• Execution is interleaved.
• Up to scheduler.

© Alex Ufkes, 2020, 2022

82

Elixir Processes: Send & Receive

• Spawn all three, send each a message.
• Which child process gets chosen to

execute is up to the scheduler.

© Alex Ufkes, 2020, 2022

83

Elixir Processes

• This has been a taste. There’s lots more.
• Elixir is famous for powerful concurrent processing.
• Processes can be used to emulate the object message

passing model in languages like Smalltalk.
• If you understand a bit about concurrency from 209

or 590, check it out.

https://elixir-lang.org/getting-started/processes.html

© Alex Ufkes, 2020, 2022

84© Alex Ufkes, 2020, 2022

Functions: First-class entities
o Create and pass anonymous functions as arguments
o Return anonymous functions as values
Immutable data: Variables are bound and matched using =
o Collections are not modified.
o Enum.map returns a new collection
Recursion: Repetition accomplished with tail-recursion.
o Enum functions work this way behind the scenes

Functional Programming & Elixir

85© Alex Ufkes, 2020, 2022

We saw:

Control flow is not built into the language as syntax constructs

• Selection and branching are implemented as functions
• Operate using keyword lists and pattern matching

Functional Programming & Elixir

86© Alex Ufkes, 2020, 2022

Is the same as:

if(1<2, [{:do, "Hello"}, {:else, "World"}])

Is the same as:

if(1 < 2, do: “Hello”, else: “World”)

if 1 < 2 do
“Hello”

else
“World”

end

• Dynamically typed
o Type inferred at run-time
o Need not explicitly specify type upon declaration

• Provides syntax conveniences to make it more intuitive to
programmers accustomed to imperative languages

• Interactive shell provides help/search functionality

https://media.pragprog.com/titles/elixir/ElixirCheat.pdf

Elixir Syntax

87© Alex Ufkes, 2020, 2022

Reserved words
• true, false, nil

o Used as atoms
• when, and, or, not, in

o Used as operators
• fn

o Used for anonymous function definitions
• do, end, catch, rescue, after, else

o Used in do/end blocks

https://github.com/elixir-lang/elixir/blob/master/lib/elixir/pages/Syntax%20Reference.md

Elixir Syntax

88© Alex Ufkes, 2020, 2022

https://elixir-lang.org/getting-started/introduction.html

https://elixirschool.com/en/lessons/basics/basics/

Further Reading

89© Alex Ufkes, 2020, 2022

Elixir Popularity

90© Alex Ufkes, 2020, 2022

https://techbeacon.com/5-emerging-programming-languages-bright-future

This list also includes Rust!

Elixir Popularity

91© Alex Ufkes, 2020, 2022

More Advanced Elixir:
• Control flow, keyword lists
• Enum VS Stream
• List comprehensions
• Elixir processes
• Elixir sendoff

92

In Summary

© Alex Ufkes, 2020, 2022

93© Alex Ufkes, 2020, 2022

