CPS506 - Comparative Programming Languages
Haskell

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason KX
UNIVERSITY
Data

@ "Normal" Values
@ 4x3+5%2
e [1,2,3]

@ Function Values

o First Class - variables, parameters, returns, lists
@ let double x = x + 2 -interactive
@ double x = x + 2 -non-interactive

@ Types

e strongly typed
e type inference - rarely need to give type
e get the types right, program probably close to correct

Overview

@ Paradigms
e Functional
@ Fully - side effects are restricted to monads
@ Lazy evaluation outside of monads
@ staticly typed
o Imperative subset
@ command line in some compilers
@ Syntax
e mathematical
Infix multi-precedent operators (standard 10 levels, definable)
control structures are expressions
no special forms except definitions
all functions have arity 1, currying
indentation matters in file
@ Semantics
e everything is lazy function application
e everything returns a value, control are parts of expressions
e parameters are call-by-need
o richly staticly typed - parametric polymorphism
@ Pragmatics
@ native compilers
@ lazy evaluation makes some optimization challenging
e designed for purity

Running Haskell

@ ghci is the interactive interpreter

@ ghc is the compiler

@ man ghc - 2500 line manual page on Linux/MacOsX
@ online User’s Guide

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.haskell.org/ghc/docs/latest/html/users_guide/

let a =7 let inc x = x+1

let £ x =5 map inc 1

let id x = x :t map inc 1

f a :t (map adda)

id a let madda = map adda
id £ a madda 1

id id id a let £ xy =x -y
let 1 = [1,2,3,4] let f4 = £ 4

:t 1 map f4 1

map id 1 4+5%6

map f 1 f4 5x6

let adda x = x+a :h

map adda 1 :browse Prelude

't a 2@

:t adda double 2000000000

:t id double 2000000000000

:t map £ 1

let g x £ = £ x

map (g 4) (map f 1) iset +t

:info (+) Open partial.hs

let second x = head (tail x) Open map.hsl .
et sceond X head & tail x Open factorial.hs Open fact_with_guard.hs

let second head . tail Open fib.hs Open fib_pair.hs Open fib_tuple.hs Open fib_

map (g 4) . map £ $ 1

map ($ 4) . map £ $ 1

let third x = head (tail (tail x))
let third x = head $ tail $ tail x OpEil HR7_JREnES ol

map third ["asdf", "qwer", "1234"] filter, foldl, foldr
map (\x -> head $ tail $ tail x) ["asdf", "qwer", "1234n"] ©Open all even.hs

map (head . tail . tail) ["asdf", "gwer", "1234"]

Open pipe.hs

["asdf", "gwer", "1234"] |> tail |> tail |> head

lists, ranges, list comprehensions
Open lists.hs

@ data
@ type
@ class - instance

class Eg a where

(==), (/f)I:: a -—>a —> BOO} o Open triplet.hs
—— Minimal complete definition:
o P Open cards.hs
e :_) Er i__) Open cards-with-show.hs
% - Y B not(x;:y) Open tree.hs
X ==Yy = ot {x/=y) Open tree-read.hs
Open factors.hs
[Fiaad J Eval L Show J
&mpuﬂh;muhw
Eq
{guality)
[Bounded Oed Hum]
{luples, et {saquential) {murmivars)
@ functions passing state as an argument [(x,y) | x <= [1,2,3] , y <= [1,2,3], x /= Y]
@ external world is the state for IO monad class Monad m where
nfixl 1 s>, soe (>>=) :t:ma -> (a->mb) ->mb
class Monad m where nst i q b
- ima-> (a->mb) —>mb ins a:zf onad [] Z ere - -
(>>) tt:ma ->mb ->mb == gs el @ 1o1) o]
return i a —>m a do x <- [1,2,3]
fail :: String -> m a y <= [1,2,3]
True <—- return (x /= vy)
m >> k = m >>= _ —> k return (x,Vy)
@ Open drunken-pirate.hs [1,2,3] >>= (\ x => [1,2,3] >>= (\y —> return (x/=y) >>=
@ Open drunken-pirate.monad.hs (\r => case r of True —> return (x,y)
. —> 1 nn
@ Open io.hs - ikt

Open password.hs

@ Maybe is used for conditional computation

@ let div x y = 1f y/= 0 then Just (x/y) else
Nothing

class Monad m where
(>>=) t:ma —> (a->mb) —>mb

instance Monad Maybe where

(>>=) :: Maybe a —> (a —-> Maybe b) —-> Maybe b
(Just x) >>= f = £ x
return = Just

fail = Nothing

@ import Test.HUnit

@ cabal

@ hackage

@ cabal install http-client

@ problem with recent cpp (e.g. clang) - on MacOSX

@ Simplicity
e size of the grammar
e complexity of navigating modules/classes
e groking the type system
@ Orthogonality
e number of special syntax forms
e number of special datatypes
@ Extensibility
e functional
e syntactically
e defining literals
e overloading

