CPS506 - Comparative Programming Languages
Haskell

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason @

RYERSON
UNIVERSITY

=
©

Overview

@ Paradigms
e Functional
@ Fully - side effects are restricted to monads
@ Lazy evaluation outside of monads
@ staticly typed
e Imperative subset
@ command line in some compilers
@ Syntax
e mathematical
Infix multi-precedent operators (standard 10 levels, definable)
control structures are expressions
no special forms except definitions
all functions have arity 1, currying
indentation matters in file
@ Semantics
e everything is lazy function application
e everything returns a value, control are parts of expressions
e parameters are call-by-need
e richly staticly typed - parametric polymorphism
@ Pragmatics
e native compilers

- la=vs AvialiiAatiAarm mAanlrAace AcAaraAs At Al ot iAam AlAallArm ALA A

https://creativecommons.org/licenses/by-nc-sa/4.0/

@ "Normal" Values
@ 4x3+5%2
e [1,2,3]

@ Function Values

e First Class - variables, parameters, returns, lists
@ let double x = x + 2 -interactive
@ double x = x + 2 -non-interactive

@ Types

e strongly typed
e type inference - rarely need to give type
e get the types right, program probably close to correct

@ ghci is the interactive interpreter

@ ghc is the compiler

@ man ghc - 2500 line manual page on Linux/MacOsX
@ online User’s Guide

http://www.haskell.org/ghc/docs/latest/html/users_guide/

let a =7

let £ x = 5

let id x = x

f a

id a

id £ a

id id id a

let 1 = [1,2,3,4]
:t 1

map id 1

map £ 1

let adda x = x+ta
map adda 1

Lt a

:t adda

:t id

let inc x = x+1

map inc 1

:t map inc 1

:t (map adda)

let madda = map adda
madda 1

let £ xy =x -y
let f4 = £ 4

map f4 1

4+5%6

f4 5%x6

:h

:browse Prelude

re

double 2000000000
double 2000000000000

:t map £ 1

let g x £ = £f x

map (g 4) (map £ 1)

:info (+)

let second x = head (tail x)

let second x = head $ tail x

let second = head . tail

map (g 4) . map £ $ 1

map ($ 4) . map £ $ 1

let third x = head (tail (tail x))
let third x = head $ tail $ tail x
map third ["asdf", "gwer", "1234"]

map (\x —-> head $ tail $ tail x) ["asdf", "gwer", "1234"]
map (head . tail . tail) ["asdf", "gwer", "1234"]

Open pipe.hs

["asdf", "gwer", "1234"] |> tail |> tail |> head

:set +t

Open partial.hs

Open map.hs

Open factorial.hs Open fact_with_guard.hs

Open fib.hs Open fib_pair.hs Open fib_tuple.hs Open fib_lazy.

lists, ranges, list comprehensions
Open lists.hs

Open my_range.hs

filter, foldl, foldr

Open all_even.hs

@ data
@ type
@ class - instance

class Eg a where

(==), (/=) :: a -> a -> Bool
—— Minimal complete definition:
= (==) or (/=)

X /=y = not (x==y)

X == = not (x/=y)

= =)~

T
Support for most types

Eq
(equality)

Bounded Ord

(tuples, etc) (sequential)

Num
(numbers)

Open triplet.hs

Open cards.hs

Open cards-with-show.hs
Open tree.hs

Open tree-read.hs

Open factors.hs

@ functions passing state as an argument
@ external world is the state for IO monad

infixl 1 >>, >>=
class Monad m where

(>>=) t:ma —> (a->mb) —>mb
(>>) t:ma -—->mb ->mb

return ta —> m a

fail :: String -> m a

m >> k = m >>= _ —> k

@ Open drunken-pirate.hs

@ Open drunken-pirate.monad.hs
@ Openio.hs

[(XIY) | x <= [1,2,3] , y <-— (231, = /= Y:l

class Monad m where

(>>=) ttma —> (a->mb) —>mb
instance Monad [] where
(>>=) :: [a] —> (a —> [b]) —> [Db]

do x <- [1,2,3]
y <- [1,2,3]
True <- return (x /= vYy)
return (x,V)

[1,2,3] >>= (\ x —> [1,2,3] >>= (\y —> return (x/=y) >>=
(\r —> case r of True —> return (x,y)
_> fail "")))

Open password.hs

@ Maybe is used for conditional computation

@ let div x y = 1if y/= 0 then Just (x/y) else
Nothing

class Monad m where
(>>=) t:ma —> (a->mb) —>mb

instance Monad Maybe where

(>>=) :: Maybe a -> (a —-> Maybe b) -> Maybe Db
(Just x) >>= f = £ x
return = Just

fail = Nothing

@ cabal

@ hackage

@ cabal install http-client

@ problem with recent cpp (e.g. clang) - on MacOSX

@ import Test.HUnit

@ Simplicity
e size of the grammar
e complexity of navigating modules/classes
e groking the type system
@ Orthogonality
e number of special syntax forms
e number of special datatypes
@ Extensibility

e functional

e syntactically

e defining literals
e overloading

