
CPS506 - Comparative Programming Languages
Haskell

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview
Paradigms

Functional
Fully - side effects are restricted to monads
Lazy evaluation outside of monads
staticly typed

Imperative subset
command line in some compilers

Syntax
mathematical
Infix multi-precedent operators (standard 10 levels, definable)
control structures are expressions
no special forms except definitions
all functions have arity 1, currying
indentation matters in file

Semantics
everything is lazy function application
everything returns a value, control are parts of expressions
parameters are call-by-need
richly staticly typed - parametric polymorphism

Pragmatics
native compilers
lazy evaluation makes some optimization challenging
designed for purity
conviently implements Domain Specific Language
file based, no built-in IDE, although ghci has a REPL

Data

"Normal" Values
4*3+5*2
[1,2,3]

Function Values
First Class - variables, parameters, returns, lists
let double x = x + 2 - interactive
double x = x + 2 - non-interactive

Types
strongly typed
type inference - rarely need to give type
get the types right, program probably close to correct

Running Haskell

ghci is the interactive interpreter
ghc is the compiler
man ghc - 2500 line manual page on Linux/MacOsX
online User’s Guide

http://www.haskell.org/ghc/docs/latest/html/users_guide/

Examples

let a = 7
let f x = 5
let id x = x
f a
id a
id f a
id id id a
let l = [1,2,3,4]
:t l
map id l
map f l
let adda x = x+a
map adda l
:t a
:t adda
:t id

Examples... 2

let inc x = x+1
map inc l
:t map inc l
:t (map adda)
let madda = map adda
madda l
let f x y = x - y
let f4 = f 4
map f4 l
4+5*6
f4 5*6
:h
:browse Prelude
:e
double 2000000000
double 2000000000000

Examples... 3

:t map f l
let g x f = f x
map (g 4) (map f l)
:info (+)
let second x = head (tail x)
let second x = head $ tail x
let second = head . tail
map (g 4) . map f $ l
map ($ 4) . map f $ l
let third x = head (tail (tail x))
let third x = head $ tail $ tail x
map third ["asdf", "qwer", "1234"]
map (\x -> head $ tail $ tail x) ["asdf", "qwer", "1234"]
map (head . tail . tail) ["asdf", "qwer", "1234"]
Open pipe.hs
["asdf", "qwer", "1234"] |> tail |> tail |> head

Examples... 4

:set +t
Open partial.hs
Open map.hs
Open factorial.hs Open fact_with_guard.hs
Open fib.hs Open fib_pair.hs Open fib_tuple.hs Open fib_lazy.hs

lists, ranges, list comprehensions
Open lists.hs
Open my_range.hs
filter, foldl, foldr
Open all_even.hs

Types

data
type
class - instance

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not(x==y)
x == y = not(x/=y)

Examples... 5

Open triplet.hs
Open cards.hs
Open cards-with-show.hs
Open tree.hs
Open tree-read.hs
Open factors.hs

Monads

functions passing state as an argument
external world is the state for IO monad

infixl 1 >>, >>=
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

m >> k = m >>= _ -> k

Open drunken-pirate.hs
Open drunken-pirate.monad.hs
Open io.hs

List Monad

[(x,y) | x <- [1,2,3] , y <- [1,2,3], x /= y]

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where
(>>=) :: [a] -> (a -> [b]) -> [b]

do x <- [1,2,3]
y <- [1,2,3]
True <- return (x /= y)
return (x,y)

[1,2,3] >>= (\ x -> [1,2,3] >>= (\y -> return (x/=y) >>=
(\r -> case r of True -> return (x,y)

_ -> fail "")))

Open password.hs

Maybe Monad

Maybe is used for conditional computation
let div x y = if y/= 0 then Just (x/y) else
Nothing

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(Just x) >>= f = f x
return = Just
fail = Nothing

Package Manager

cabal

hackage

cabal install http-client

problem with recent cpp (e.g. clang) - on MacOSX

Unit Testing

import Test.HUnit

Evaluation

Simplicity
size of the grammar
complexity of navigating modules/classes
groking the type system

Orthogonality
number of special syntax forms
number of special datatypes

Extensibility
functional
syntactically
defining literals
overloading

