
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 4: Lists, pattern matching, functions

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

Labs 3 & 4 posted this week

3

Course Administration (CCPS)

© Alex Ufkes, 2020, 2022

Labs 1 & 2 are due tomorrow!

Functional paradigm,
Elixir intro

4

Previously

© Alex Ufkes, 2020, 2022

Continuing Elixir:
• Basic types, Elixir scripts
• Lists and tuples, heads and tails
• Pattern matching
• Functions and modules
• Named and anonymous functions

5

Today

© Alex Ufkes, 2020, 2022

IO.puts “Hello, World!”

Hello World

• IO.puts prints to the shell
• When executing in the shell, return values get echoed.
• In this case, IO.puts returns the atom :ok
• Atoms in Elixir are similar in concept to symbols in

Smalltalk.

6© Alex Ufkes, 2020, 2022

Elixir Scripts

7© Alex Ufkes, 2020, 2022

Decimal, binary, octal, and
hexadecimal integers

Elixir Syntax: Basic Types

Typing literals into the shell will echo them back, assuming they are valid.

8© Alex Ufkes, 2020, 2022

More accurately:
• Everything in Elixir is an expression, even single literals.
• Evaluating a literal simply results in that value.
• In the interactive shell, the return value is printed for us.
• :ok is the return value of IO.puts. The actual printing to

the screen is a side effect!

Elixir Syntax: Basic Types

Typing literals into the shell will echo them back, assuming they are valid.

9© Alex Ufkes, 2020, 2022

Floating point, Boolean, strings

Elixir Syntax: Basic Types

10© Alex Ufkes, 2020, 2022

Elixir supports
scientific notation

Rounding and
truncate functions

Floating point numbers in Elixir are 64-bit, double precision

Floating Point

11© Alex Ufkes, 2020, 2022

Floating point numbers in Elixir are 64-bit, double precision

Floating Point

12

Notice:
• We can omit parentheses

around function arguments.
• Multiple arguments are still

separated by commas.

© Alex Ufkes, 2020, 2022

Comparison operator works
the way we’re used to

We can check if a value is Boolean
using the is_boolean function

Boolean

13© Alex Ufkes, 2020, 2022

In Elixir we have Boolean values true and false.
Not all languages have a Boolean type.

Types, Values, Truthiness

C does not have a Boolean type. It still supports Boolean expressions, of course.
• In C, numeric 0 is considered False, and everything else is considered True.

In Java, we have Boolean. Logical operators are only valid with Boolean operands.

Elixir complicates things by combining both approaches:
• We have Boolean True and False, but values of every other

type are considered either true or false.

© Alex Ufkes, 2020, 2022 14

Boolean:
true, false

&&, ||, !

With these operators:
• non-false and non-nil are true.
• nil and false are false.
• 0 is considered true!

iex> "gh" && false
false

iex> "gh" || false
"gh"

Except…
• The result isn’t true or false
• It’s the value that decided

the result of true or false

15

Boolean Expressions

What we actually get is the value that determined the
truthiness of the expression

© Alex Ufkes, 2020, 2022

Test Type

Elixir is dynamically typed!
• Type errors occur at run-time, not at compile time.
• I.e., attempting some operation on incompatible types

results in a run-time error.
• A static type system catches type errors at compile time

16© Alex Ufkes, 2020, 2022

Addition, multiplication

Division:
• Notice 5.0, despite integer operands
• / operator returns floating point in Elixir

Basic Arithmetic

17© Alex Ufkes, 2020, 2022

div and rem functions

div:
• Result of integer division
• Like / in Java
rem:
• Remainder operator
• Same as % in C
• Requires integer arguments

Basic Arithmetic

18© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 19

Elixir inherits this from Erlang:

Returns float

20© Alex Ufkes, 2020, 2022

:math.pow

Precedence?
It’s typical:

https://hexdocs.pm/elixir/master/operators.html

21© Alex Ufkes, 2020, 2022

Elixir functions are described in terms of their name and arity?
Arity refers to the number of arguments a function takes

Elixir functions are commonly described by the following notation: name/arity

round/1
rem/2
trunc/1
div/2
is_boolean/1

This is not language syntax,
just a documentation style.

Function Arity

© Alex Ufkes, 2020, 2022 22

Atoms:
A constant whose name is its value:
iex> :hello

:hello
iex> :world

:world
iex> :hello == :world

false

Boolean literals are Atoms:
iex> :true == true

true
iex> :false == false

true
iex> is_boolean(:false)

true

Elixir atoms are the equivalent of Smalltalk symbols.
Atoms with same value exist only once in memory.

More Types: Atoms

© Alex Ufkes, 2020, 2022 23

Can have line breaks in them:

iex> "Hello,
...> World!"

"Hello,\nWorld!"
iex> "Hello,\nWorld"

"Hello,\nWorld"

iex> IO.puts "Hello\nWorld!"
Hello
World!
:ok

We can use IO.puts/1 to print a string:

Newline is evaluated when
we use the puts function.

IO.puts/1 returns the atom :ok after printing

More Types: Strings

© Alex Ufkes, 2020, 2022 24

Unicode: length VS number of bytes

Strings in Elixir are represented
by sequences of bytes.

However. Unicode characters
beyond 255 require two

bytes to represent:

iex> byte_size "Hello"
5

iex> byte_size "Hellö"
6

iex> String.length "Hellö"
5

Use String.length/1 to find the number of characters.

More Types: Strings

© Alex Ufkes, 2020, 2022 25

Interpolation, concatenation

iex> name = "Alex"
"Alex"

iex> "Hello, #{name}!"
"Hello, Alex!"

Interpolation

iex> name = "Alex"
"Alex"

iex> "Hello, " <> name
"Hello, Alex"

Concatenation

More Types: Strings

© Alex Ufkes, 2020, 2022 26

Integer:
2, -7, 0x1F, 0o777, 0b10101

Float:
2.0, 1.1e-3, 3.14e7

Boolean:
true, false

Atom:
:Hello, :world, :false, :true

String:
“Hello, World!”, “123”, “tr\nue”

+, -, *, /
div/2, rem/2
>, >=, <, <=, ==, !=

Concatenation <>,
interpolation #{}

Type Summary

© Alex Ufkes, 2020, 2022 27

• Use [] to define a list of values.
• Like Smalltalk, values can be anything (heterogeneous).
• Operating on lists is central in functional languages

iex> [1, 2, true, 3, false]
[1, 2, true, 3, false]

iex> length [1, 2, 3]
3

Use length/1 to print the
number of items in the list.

Lists are implemented in Elixir as linked lists.

Collections: Lists

© Alex Ufkes, 2020, 2022 28

Lists are implemented in Elixir as linked lists.

iex> list = [1, 3.14, true, "Hello", :World]
[1, 3.14, true, "Hello", :World]

iex> hd list
1

iex> tl list
[3.14, true, "Hello", :World]

TailsHeads

Return first element of list

Return all but first element of a list

© Alex Ufkes, 2020, 2022 29

Lists are implemented in Elixir as linked lists.

TailsHeads

iex(30)> hd [1]
1
iex(31)> tl [1]
[]

© Alex Ufkes, 2020, 2022 30

iex> list = [1, 2, true, :Hello, "World", false, 5]
[1, 2, true, :Hello, "World", false, 5]

iex> list -- [true, false]
[1, 2, :Hello, "World", 5]

iex> list ++ [6]
[1, 2, true, :Hello, "World", false, 5, 6]

iex> list -- [:Hello, "abcd"]
[1, 2, true, "World", false, 5] Safe to attempt

removal of an item
not in the list!

List Concatenation & Subtraction

© Alex Ufkes, 2020, 2022 31

iex> [104, 101, 108, 108, 111]
'hello'

When the Erlang shell sees a list of printable ASCII values
(0-127), it displays them as a charlist (single quotes).

Huh?

© Alex Ufkes, 2020, 2022 32

iex> x = [1, 2.0, "Hello", :world]
[1, 2.0, "Hello", :world]
iex> IO.puts x
** (ArgumentError) argument error

(stdlib) :io.put_chars(:standard_io, :unicode,
[[1, 2.0, "Hello", :world], 10])

IO.puts can’t handle arbitrary lists:

IO.puts wants a list containing things it can convert to Unicode.

IO.puts VS IO.inspect

33© Alex Ufkes, 2020, 2022

iex> x = [1, 2.0, "Hello", :world]
[1, 2.0, "Hello", :world]
iex> IO.inspect x
[1, 2.0, "Hello", :world]
[1, 2.0, "Hello", :world]

IO.inspect prints
and returns the list.

We can use IO.inspect:

IO.puts VS IO.inspect

34© Alex Ufkes, 2020, 2022

We can use IO.inspect:

IO.puts VS IO.inspect

iex> x = [104, 101, 108, 108, 111]
'hello'
iex> IO.inspect x
'hello'
'hello'

IO.inspect still prints charlists!

35© Alex Ufkes, 2020, 2022

We can use IO.inspect:

IO.puts VS IO.inspect

iex> x = [104, 101, 108, 108, 111]
'hello'
iex> IO.inspect x
'hello'
'hello'

iex> IO.inspect (x, charlists: :as_lists)

Invoke IO.inspect thusly:

Prints list as a list, rather
than converting to Unicode.

[104, 101, 108, 108, 111]
'hello'

36© Alex Ufkes, 2020, 2022

A sequence of values whose elements are stored contiguously in memory

This means we can directly access
individual elements using elem/2:

iex> tup = {1, "2", :three}
{1, "2", :three}

iex> elem tup, 0
1

iex> elem tup, 1
"2"

iex> elem tup, 2
:three

iex> elem tup, 3
** (ArgumentError) argument error
:erlang.element(4, {1, "2", :three})

Collections: Tuples

© Alex Ufkes, 2020, 2022 37

iex> tup
{1, "2", :three}

iex> put_elem(tup, 1, 55)

Operations result in new lists/tuples:

put_elem/3 to change an element

{1, 55, :three}
iex> tup

{1, "2", :three}

put_elem/3 returned a different
tuple. The original hasn’t changed.

Bind a new label (or re-bind tuple) to save the result.

Lists & Tuples are Immutable

tup = put_elem(tuple, 1, 55)

© Alex Ufkes, 2020, 2022 38

When we say: x=1
• The value 1 is created in memory
• x is a label for the value 1

If we then say: x=2
• We are NOT changing the value 1 in memory.
• We are creating the value 2 at a different place in memory
• x is now a label for the value 2
• This is called re-binding.
• We change the label, not the value.

Elixir Variables are Immutable

© Alex Ufkes, 2020, 2022 39

1

x = 1

x

x = 2

2

Elixir Variables are Immutable

© Alex Ufkes, 2020, 2022 40

1

x = 1

x

x = 2

2
Garbage:

Elixir Variables are Immutable

© Alex Ufkes, 2020, 2022 41

• In imperative languages, variables can be thought of as containers.
• We can put whatever we want into the container (if the type

system allows it, of course)
• Reassigning a variable means mutating the value in the container

• In Elixir and other functional languages, variables are labels.
• We can change the value that we apply the label to, but we can’t

change the value itself.

Elixir Variables are Immutable

© Alex Ufkes, 2020, 2022 42

Lists in Elixir are linked lists:
• Linear time to access and append, constant time to pre-pend
• Use to store a collection of values

Tuples are contiguous:
• Constant time to access, linear time to update
• Use when size and contents are fixed at compile time.
• Not meant to be iterated over, direct element access only.

Both are immutable, updating creates new list/tuple. However:
• If we change one element in a 10-element tuple, we don’t

actually duplicate values for the 9 unchanged elements.
• Behind the scenes, elements can be shared.

Lists or Tuples?

© Alex Ufkes, 2020, 2022 43

Just like Python:
• Fixed, small number of elements, need fast

random access? Use a tuple.
• Large number of elements, changing in size over

time, don’t need random access? Use a list.
• Always keep in mind the cost of operations on

arrays VS linked lists (C/CPS305)

Lists or Tuples?

© Alex Ufkes, 2020, 2022 44

Pattern
Matching

45© Alex Ufkes, 2020, 2022

46

=
Pattern matching is a fundamental part of Elixir

This is not the assignment operator. It is the match operator.

x = 1 When a name is on the left-hand side of the
match operator, we bind or rebind the name.

© Alex Ufkes, 2020, 2022

iex> x = 2
2

iex> 2 = x
2

iex> 3 = x
** (MatchError) no match of right hand side value: 2

iex> 3 = x + 1
3

If a match is successful, it returns the value of the right-hand
side of the expression. If not, a MatchError.

This is a valid expression!

(Variable) Name on the Right?

47© Alex Ufkes, 2020, 2022

iex> x = 2
2

iex> 2 = x
2

iex> 3 = x
** (MatchError) no match of right hand side value: 2

iex> 3 = x + 1
3

This is a valid expression!

(Variable) Name on the Right?

48

Names on the left? Bind or rebind to value on the right.
Names on the right? Pattern match with value on the left.

© Alex Ufkes, 2020, 2022

Let’s see matching with lists:

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> [1, 2, 3, 4, 5] = list
[1, 2, 3, 4, 5]

49

Matching Lists

© Alex Ufkes, 2020, 2022

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

iex> [1 | tail] = list
[1, 2, 3, 4, 5]

iex> tail
[2, 3, 4, 5]

iex> [2 | tail] = list
** (MatchError) no match of right hand side
value: [1, 2, 3, 4, 5]

50

Matching Lists

A pattern match will error if the sides can’t be matched

• Separates list into head and tail.
• In this case, the head must be 1!

© Alex Ufkes, 2020, 2022

iex> tail
[2, 3, 4, 5]

iex> [2 | _] = tail
[2, 3, 4, 5]

iex> [2, 3 | test] = tail
[2, 3, 4, 5]

iex> test
[4, 5]

• Not equating the tail (of tail) with anything
• ‘_’ can never be read from. Value discarded.

Match first two values

iex> [_ | test] = tail
[2, 3, 4, 5]

Match test with tail of tail

51© Alex Ufkes, 2020, 2022

iex> tup = {:OK, "Hello"}
{:OK, "Hello"}

iex> {:OK, value} = tup
{:OK, "Hello"}

iex> value
"Hello"

• When matching tuples, the
comma is used as a separator.

• Tuples don’t deal in head/tail
• They aren’t linked lists.
• Comma for tuples, | for lists.

Matching Tuples

52© Alex Ufkes, 2020, 2022

iex> {a | b} = {1, 2, 3, 4, 5}

** (CompileError) iex: misplaced operator |/2

The | operator is typically used between brackets as the cons operator:

[head | tail]

where head is a single element and the tail is the remaining of a list.
It is also used to update maps and structs, via the %{map | key: value}
notation, and in typespecs, such as @type and @spec, to express the union
of two types

53© Alex Ufkes, 2020, 2022

iex> {a, b, c} = {:hello, "World", 42}
{:hello, "World", 42}

iex> {a, b} = {:hello, "World", 42}
** (MatchError) no match of right hand side
value: {:hello, "World", 42}

This is called destructuring. a, b, c are now
bound to individual elements of the tuple.

Matching Tuples

54© Alex Ufkes, 2020, 2022

If we use the match operator with a variable on the left side of the expression,
that variable is simply re-bound to that value. For example:

iex> x = 3
3

iex> x = 2
2

This is often undesirable!

iex> x = 3
3

iex> ^x = 2
** (MatchError) no match
of right hand side value: 2

Use ^ operator to force x to hold its binding

Pin Operator

55© Alex Ufkes, 2020, 2022

iex> x = 2
2

iex> [^x, y] = [1, 3]
** (MatchError) no match of right hand side value: [1, 3]

iex> y
** (CompileError) iex:2: undefined function y/0

iex> [^x, y] = [2, 3]
[2, 3]

iex> y
3

Pin Operator: Lists & Tuples

56© Alex Ufkes, 2020, 2022

Functions

57© Alex Ufkes, 2020, 2022

Higher Order functions
• Can accept a first-class functions as an arguments
• Can return a first-class function

Recall: First Class VS Higher Order

58

First Class functions
• Can be passed to higher order functions as arguments
• Can be returned from higher order functions

© Alex Ufkes, 2020, 2022

Defined within a module
• Modules can contain multiple functions
• Modules can be compiled independently, making

functions available for later use.
• Named functions are not first class!

o Cannot be passed as arguments, cannot be returned
• Named functions of same name can have different arity,

unlike anonymous functions (coming up)

Named Functions

59© Alex Ufkes, 2020, 2022

defmodule HelloWorld do
def hello do

IO.puts "Hello world!"
end

end

Module name:

Function name and
parameter list

Function
expressions

Modules and Named Functions

60© Alex Ufkes, 2020, 2022

Erlang
bytecode

61© Alex Ufkes, 2020, 2022

In a script file (.exs)

62© Alex Ufkes, 2020, 2022

Named functions (and modules) can be defined in a script, but then
we can’t use them later (without including their source code)

Named Functions

63© Alex Ufkes, 2020, 2022

Named functions (and modules) can be defined in a script, but then we
can’t use them later (without including their source code)

• Define Greeter module in the file “Greeter.ex”
• Compile it with elixirc:

64© Alex Ufkes, 2020, 2022

As long as the script is in the same folder,
we can invoke functions from Greeter:

65© Alex Ufkes, 2020, 2022

defmodule Greeter do

defp hello(), do: "Hello "

def greet(name \\ "Bill"), do: hello() <> name

end

Private function:
Can only be invoked inside Greeter module

Default argument:
If no argument is provided, name will be “Bill”

66

Private Functions, Default Arguments

© Alex Ufkes, 2020, 2022

67© Alex Ufkes, 2020, 2022

• We don’t have an imperative-style return statement in Elixir
• The result of the final expression is returned.

defmodule Silly do
def print() do

"Hello"
","
" "
"World!"

end
end

Four
expressions

IO.puts Silly.print()

World!

68

Return Values

© Alex Ufkes, 2020, 2022

Overloading

69© Alex Ufkes, 2020, 2022

Multiple Modules

70© Alex Ufkes, 2020, 2022

Can be created live, inline:

iex> add = fn a, b -> a + b end

Function
parameters

Function
behavior

• “Anonymous” functions can
still be named.

• They are first class
• Can be passed to another

function and invoked there.

Anonymous Functions

71© Alex Ufkes, 2020, 2022

Invoke using the dot operator:

iex> add = fn (a, b) -> a + b end
#Function<12.99386804/2 in :erl_eval.expr/5>

iex> add.(1, 2)
3

iex> add.(8, 9)
17

Arguments are passed
in the usual manner

iex> add 8, 9
** (CompileError) iex:8: undefined function add/2

Can’t use this syntax with anonymous functions:

Anonymous Functions

72© Alex Ufkes, 2020, 2022

iex> add = &(&1 + &2)
&:erlang.+/2

iex> add.(3, 4)
7

iex> add.(8, -4)
4

Shorthand

73© Alex Ufkes, 2020, 2022

(Maybe) not the most readable

Function Composition

74© Alex Ufkes, 2020, 2022

The pipe operator:

x = inc.(inc.(inc.(inc.(0))))

Can be written as:

x = 0 |> inc.() |> inc.() |> inc.() |> inc.()

Result becomes first argument of next function call

Function Composition

75

Very useful with Enums and Streams (later)

© Alex Ufkes, 2020, 2022

defmodule UserMath do

def hof(val, func) do
func.(val)

end

end

Two arguments:
• A numeric value and a function
• (Or so our function assumes)

Invoke func with val as argument

• If func is not actually a function?
• We will get a run-time type error

if/when we try to use it as such.

A function accepting a function as an argument?

Higher Order & First Class Functions

76© Alex Ufkes, 2020, 2022

• Anonymous function to do some operation
• Recall – only anonymous functions can be args

• Pass value 8 and function sq to hof

A function accepting a function as an argument?

defmodule UserMath do

def hof(val, func) do
func.(val)

end

end

Higher Order & First Class Functions

77© Alex Ufkes, 2020, 2022

Are we not passing a function to another function here?

No! the result of pow() is passed as
an argument, not the function itself.

78

Same Thing?

© Alex Ufkes, 2020, 2022

Functions & Patterns

79© Alex Ufkes, 2020, 2022

80

Pattern Matching: Function Signatures

Function “overloading” is just pattern matching on the signature

© Alex Ufkes, 2020, 2022

Ideas? What can we do?

81© Alex Ufkes, 2020, 2022

82© Alex Ufkes, 2020, 2022

?
Single argument, a tuple

83

What about…

© Alex Ufkes, 2020, 2022

84© Alex Ufkes, 2020, 2022

85© Alex Ufkes, 2020, 2022

86© Alex Ufkes, 2020, 2022

defmodule Length do
def of([]), do: 0
def of([_ | t]), do: 1 + of(t)

end

When there’s one value left in the list, t will be []

87

Recursion in Elixir

Who needs looping anyway?

© Alex Ufkes, 2020, 2022

Argument pattern matching makes recursion straightforward:

Base cases

Recursive case.
(O(2n), I know)

88© Alex Ufkes, 2020, 2022

Consider UserMath.fac()

defmodule UserMath do
def fac(num), do: fac(num, 1)
def fac(0, prod), do: prod
def fac(num, prod), do: fac(num-1, num*prod)

end

defmodule UserMath do
def fac(0), do: 1
def fac(n), do: n*fac(n-1)

end

Pass running product as argument
89

Tail Recursion?

Wrapper function so user can
invoke without initializing the

running product

© Alex Ufkes, 2020, 2022

90

Private Functions, Default Arguments

defmodule UserMath do
def fac(num), do: fac(num, 1)
defp fac(0, prod), do: prod
defp fac(num, prod), do: fac(num-1, num*prod)

end

Hide the tail helper functions from the outside world

© Alex Ufkes, 2020, 2022

In Summary:

91

Continuing Elixir:
• Lists and tuples, heads and tails
• Pattern matching
• Functions and modules
• Named and anonymous functions

© Alex Ufkes, 2020, 2022

92© Alex Ufkes, 2020, 2022

