CPS506 - Comparative Programming Languages

Elixir

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2017 Dave Mason KX

RYERSON
UNIVERSITY

@ Joe Armstrong worked at Ericson

@ Erlang originally for lab development 1986

@ 1995 became production on a phone switch - 9-9’s
@ 2006 became multi-processor

https://creativecommons.org/licenses/by-nc-sa/4.0/

@ Paradigms
e Functional
e Mostly immutable
@ Rich concurrency support
@ Syntax
e Erlang was Prolog-like; Elixir is more conventional
Infix multi-precedent operators
control structures are pattern matching
Functions are defined in modules
Only control structures are matching, recursion, list
comprehensions
fixed arity functions, but can share a name with different arity
spawn, receive, send for communication
@ Semantics
tail recursion is recognized
everything returns a value, control are parts of expressions
parameters are call-by-value
dynamicly typed
e functions can be spawned as processes - can receive messages
@ Pragmatics
e Elixir runs on Erlang VM

defmodule Sequential do
def square(collection) do
collection
| > Enum.map (fn x —> x * x end))
end
end

result =Sequential.square 1..1000

defmodule Sequential do
def map (collection, func) do
collection
| > Enum.map (fn x —-> func. (x) end))
end
end

result =Sequential.map 1..1000, & (&1 * &1)

OO is about manipulating state Elixir is about transforming data

defmodule Parallel do
def pmap(collection, func) do
collection
| > Enum.map (fn x —-> Task.async(fn -> func. (x) end) end))
|> Enum.map (&Task.await/1)
end
end

result = Parallel.pmap 1..1000, & (&1 * &1)

defmodule Parallel do
def pmap(collection, func) do
collection
| > Enum.map (& (Task.async (fn —> func. (&1) end)))
| > Enum.map (&Task.await/1)
end
end

result = Parallel.pmap 1..1000, & (&1 * &1)

@ Object orientation is not the only way to design code.
@ Functional programming need not be complex or mathematical.

@ The foundations of programming are not assignments, if
statements, and loops.

@ Concurrency does not need locks, semaphores, monitors, and the
like.

@ Processes are not necessarily expensive resources.
@ Metaprogramming is not just something tacked onto a language.
@ Even if it is work, programming should be fun.

from Elixir book

@ = is the binding operator
@ not assignment
@ assignment relates to GOTO

@1 + 2

@ 1 < 4.0

@ :atomlike #symbol

@ variable

@ = is pattern-match/binding - once

@ [[3,4]1,5,6] [3,4]|[5,6]1] can have improper lists
@ (2,3,4}

@ {:valid, [h|t],x} = {:valid, [1,2,3], :blat}
@ generally use function patterns instead

@ if e0 do el else e2 end

@ cond do cl —> el

c2—->e2 end

@ case e0 do pl —> el
p2->e2 end

@ ¢ "matching_function”
@ Matching_function.number (one) - can apply as functions to index
@ negate = fn x -> -x end

@ guards

Enum.reduce (numbers, 0, fn x, sum -> x + sum end)
Enum.map (numbers, fn x -> x + 1 end)

Enum.filter (numbers, small)

Enum.all? ([0, 1, 2],small)

Enum.any? (numbers, small)

Enum.take_while (numbers, 3)

Enum.take_while (numbers, small)

Enum.drop_while (numbers, small) .

list comprehensions

@ for x <-[1,2,3,4], x<3, y<-[5,6], y<x, do:
{x,v}

e generators and filters

import Enum

@ deck = for rank <- "23456789TJQKA’, suit <-
"CDHS’, do: [suit, rank]

@ deck |> shuffle |> take (13)

@ tail-calls properly recognized
@ loops are simply tail-recursive function calls

@ full power of function pattern-matching for loop control

@ receive do pattern ->
pattern —-> end

pid = spawn (fn xxxx)

pid = spawn (Module, : fun, [args])
send pid, :message

link (pid) leads to signal on exit

pid = spawn_link (fn xxxx)
register (:atom,pid)

self

receive ... after

exlit (status)

@ S{key: wvalue}
@ map|[:key]

@ keys can be anything

@ [key: wvalue]
@ options parameter

@ keys must be atoms

@ lazy evaluation
@ equivalent to Enum

@ concat, cycle, take, drop

mix - project builder + package manager
mix new projectName

mix test

iex —-S mix

@ defmacro

@ hygenic

@ use keyword usually defines macros
@ used in test definition

module dynamically loaded into running server

current/old versions

existing old code continues

fully qualified function calls access current code

another load kills old, moves current to old, new to current
-on_load (name/) allows checking if load should proceed
there are higher-level task managers in OTP

@ Simplicity

e Size of the grammar

e complexity of navigating modules/classes
@ Orthogonality

e number of special syntax forms
e number of special datatypes

@ Extensibility

e functional

e syntactically

e defining literals
e overloading

