
CPS506 - Comparative Programming Languages
Elixir

Dr. Dave Mason
Department of Computer Science
Ryerson University

c©2017 Dave Mason

History

Joe Armstrong worked at Ericson
Erlang originally for lab development 1986
1995 became production on a phone switch - 9-9’s
2006 became multi-processor

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

Paradigms
Functional
Mostly immutable
Rich concurrency support

Syntax
Erlang was Prolog-like; Elixir is more conventional
Infix multi-precedent operators
control structures are pattern matching
Functions are defined in modules
Only control structures are matching, recursion, list
comprehensions
fixed arity functions, but can share a name with different arity
spawn, receive, send for communication

Semantics
tail recursion is recognized
everything returns a value, control are parts of expressions
parameters are call-by-value
dynamicly typed
functions can be spawned as processes - can receive messages

Pragmatics
Elixir runs on Erlang VM
byte-code interpreter (BEAM)
designed for programmer efficiency, not machine efficiency
easy to use all available processors, VM is efficient
file based, no IDE, although iex allows interactivity
extreme stability - processes fail, system keeps running

Elixir Example

defmodule Sequential do
def square(collection) do
collection
|> Enum.map(fn x -> x * x end))

end
end

result =Sequential.square 1..1000

Elixir Example

defmodule Sequential do
def map(collection, func) do
collection
|> Enum.map(fn x -> func.(x) end))

end
end

result =Sequential.map 1..1000, &(&1 * &1)

Elixir Example

OO is about manipulating state Elixir is about transforming data

defmodule Parallel do
def pmap(collection, func) do
collection
|> Enum.map(fn x -> Task.async(fn -> func.(x) end) end))
|> Enum.map(&Task.await/1)

end
end

result = Parallel.pmap 1..1000, &(&1 * &1)

Elixir Example

defmodule Parallel do
def pmap(collection, func) do
collection
|> Enum.map(&(Task.async(fn -> func.(&1) end)))
|> Enum.map(&Task.await/1)

end
end

result = Parallel.pmap 1..1000, &(&1 * &1)

Functional Programming

Object orientation is not the only way to design code.
Functional programming need not be complex or mathematical.
The foundations of programming are not assignments, if
statements, and loops.
Concurrency does not need locks, semaphores, monitors, and the
like.
Processes are not necessarily expensive resources.
Metaprogramming is not just something tacked onto a language.
Even if it is work, programming should be fun.

from Elixir book

Binding and Immutability

= is the binding operator
not assignment
assignment relates to GOTO

Expressions

1 + 2

1 < 4.0

:atom like #symbol

variable

= is pattern-match/binding - once

[[3,4],5,6] [3,4|[5,6]] can have improper lists

{2,3,4}

{:valid,[h|t],x} = {:valid,[1,2,3],:blat}

generally use function patterns instead

if e0 do e1 else e2 end

cond do c1 -> e1
c2->e2 end

case e0 do p1 -> e1
p2->e2 end

Definitions

c "matching_function”

Matching_function.number(one) - can apply as functions to index

negate = fn x -> -x end

guards

Higher Order Functions & Lists

Enum.reduce(numbers, 0, fn x, sum -> x + sum end)

Enum.map(numbers, fn x -> x + 1 end)

Enum.filter(numbers,small)

Enum.all?([0, 1, 2],small)

Enum.any?(numbers,small)

Enum.take_while(numbers,3)

Enum.take_while(numbers,small)

Enum.drop_while(numbers,small).

list comprehensions
for x <-[1,2,3,4], x<3, y<-[5,6], y<x, do:
{x,y}
generators and filters
import Enum
deck = for rank <- ’23456789TJQKA’, suit <-
’CDHS’, do: [suit,rank]
deck |> shuffle |> take(13)

Loops and Recursion

tail-calls properly recognized

loops are simply tail-recursive function calls

full power of function pattern-matching for loop control

Processes, Concurrency & Failure

receive do pattern -> ...
pattern -> end

pid = spawn(fn xxxx)

pid = spawn(Module,:fun,[args])

send pid,:message

link(pid) leads to signal on exit

pid = spawn_link(fn xxxx)

register(:atom,pid)

self

receive ... after

exit(status)

Map

%{key: value}

map[:key]

keys can be anything

Keyword lists

[key: value]

options parameter

keys must be atoms

Stream

lazy evaluation

equivalent to Enum

concat, cycle, take, drop

Workflow & mix

mix - project builder + package manager

mix new projectName

mix test

iex -S mix

Macros

defmacro

hygenic
use keyword usually defines macros
used in test definition

Servers

module dynamically loaded into running server
current/old versions
existing old code continues
fully qualified function calls access current code
another load kills old, moves current to old, new to current
-on_load(name/) allows checking if load should proceed
there are higher-level task managers in OTP

Evaluation

Simplicity
Size of the grammar
complexity of navigating modules/classes

Orthogonality
number of special syntax forms
number of special datatypes

Extensibility
functional
syntactically
defining literals
overloading

