
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 3: Out with Smalltalk, in with Elixir



© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital 
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students 
registered in course C/CPS 506 can use this material for the purposes 
of this course but no other use is permitted, and there can be no sale 
or transfer or use of the work for any other purpose without explicit 
permission of Alex Ufkes.



• Assignment description is posted!
• If you liked Smalltalk, you could start 

working on the Smalltalk version.

3

Course Administration (CCPS)

© Alex Ufkes, 2020, 2022



• Double dispatch 
• Smalltalk conclusion
• Functional paradigm
• Getting started with Elixir

4

Today

© Alex Ufkes, 2020, 2022



Method “Overloading”

5© Alex Ufkes, 2020, 2022



Method Overloading

Methods are overloaded through differing parameter lists:

• In Java, method name and 
parameter list are independent.

• In Smalltalk, they are 
fundamentally linked

6© Alex Ufkes, 2020, 2022



• In Smalltalk, there is no overloading in this fashion.
• We cannot have a single message that optionally 

accepts differing numbers of arguments.
• When we add another argument, the method name 

changes.

Method Overloading

7© Alex Ufkes, 2020, 2022



When we add another argument, the method/message name changes.

• value and value: are 
different names

• value: and value:value:
are different names

• And so on

Method Overloading

8© Alex Ufkes, 2020, 2022



• All well and good, but what about the same number of 
arguments with different types?

• In Java, compiler sees these as different:

public int add(int x, int y)

public double add(double x, double y)

• In Smalltalk, argument types aren’t checked upon message pass.
• Invoking a method (passing a message) only fails when receiving 

object can’t handle the message.
• We get a Did Not Understand error (DNU).

Method Overloading

9© Alex Ufkes, 2020, 2022



However! The following code succeeds!

• Pass + message to SmallInteger 3 with SmallInteger argument 4
• Pass + message to SmallInteger 3 with BoxedFloat64 argument 4.0
• Same message, same receiving class, different kind of argument. How?

Method Overloading

10© Alex Ufkes, 2020, 2022



Invoke superclass addition

11© Alex Ufkes, 2020, 2022



12© Alex Ufkes, 2020, 2022



• Check if argument is integer.
• If so, it’s an integer expression 

and we can react accordingly

• Check if operands have same sign
• negative returns Boolean

13© Alex Ufkes, 2020, 2022



14© Alex Ufkes, 2020, 2022



If arg isFraction, we can still 
add precisely using numerator 

and denominator

If arg is neither fraction nor integer, we send it 
adaptToInteger:andSend: message

15© Alex Ufkes, 2020, 2022



• Convert original receiving integer to floating point
• Perform addition between two BoxedFloat64
• It’s now a problem for the Float class implementation of +!

adaptToInteger:andSend:

16© Alex Ufkes, 2020, 2022



• Method overloading not possible in Smalltalk.
• Uses the previous technique instead, called double dispatch
• Double/multiple dispatch is not unique to Smalltalk.

Double Dispatch:
• Broadly: Make additional method/function calls based on the 

types of the objects involved in the original call at runtime.
• I.e., if arg is float, invoke method for floating point addition.
• Overloading is done at compile time; double dispatch occurs 

at runtime.

Double Dispatch

17© Alex Ufkes, 2020, 2022



Overloading is decided at compile time, double dispatch at runtime.

• In Smalltalk (double dispatch), the same method gets invoked 
regardless of the argument type. Same message regardless!

• Secondary method call(s) occur in the body of the first 
method, depending on argument type.

• In Java, a different method gets invoked from the very start 
depending on the type of the argument.

• Decided at compile time (early binding).

Explore this on your own for some of the other types and operators

Double Dispatch

18© Alex Ufkes, 2020, 2022



19

Late VS Early Binding

Dynamic/late binding VS static/early binding

Early binding
• Method to be called is found at 

compile time
• Method not found = compile error
• More efficient at runtime

Late binding
• Method is looked up at runtime
• Often as simple is searching name
• Symbol comparison in Smalltalk
• Method not found = runtime error
• Costlier at runtime

Double dispatch happens at runtime, late binding

© Alex Ufkes, 2020, 2022



This concludes your 
Smalltalk crash course!

Let’s finish with a 
high-level summary.

20© Alex Ufkes, 2020, 2022



Extremely minimalist:
• Only five reserved “keywords”: true, false, nil, self, super
• Java has 50, C++ has 82, C has 32

Smalltalk Syntax

There is an adage – “Smalltalk syntax fits on a postcard”

21© Alex Ufkes, 2020, 2022



“Smalltalk syntax fits on a postcard”

Method with argument:

Temporary 
variable

Unary messages Binary messages

Block

Keyword messageHeterogeneous 
array

Pass do: message with 
block argument to arrayReturn result

22© Alex Ufkes, 2020, 2022



We are free to modify core Smalltalk classes and methods:

Smalltalk Extensibility

23© Alex Ufkes, 2020, 2022



Beware: You WILL cause havoc and be forced to create a new Pharo image.
• The Pharo live environment is using these very methods in a JIT fashion.
• Changing True to False means Pharo itself thinks True is False.

Amuse your friends! Confound your enemies!

We are free to modify core Smalltalk classes and methods:

24© Alex Ufkes, 2020, 2022



Always remember:
1. Everything is an object
2. Computation is done by passing messages to objects.
3. Message precedence: unary, binary, keyword.

• Equal precedence evaluates left to right

Everything else follows from these principles.

“A compiler will complain about syntax, your coworkers will complain about semantics”

Smalltalk Semantics

25© Alex Ufkes, 2020, 2022



• Has garbage collection (like Java)
• Best-in-class IDE (according to fans).

o Class browser, playground, debugger, transcript, etc. 
• Just-in-time compilation (JIT)

o Code executed in a live environment
• Image-based development

Smalltalk

26© Alex Ufkes, 2020, 2022



Smalltalk popularity? A dead language?
https://medium.com/smalltalk-talk/who-uses-smalltalk-c6fdaa6319a

“Around the time that Java was just being introduced to the world, the 
banking giant rolled out a new financial risk management and pricing 
system called Kapital, written entirely in Cincom Smalltalk.”

“JPMorgan estimates that developing and maintaining this system in 
any other language would’ve required at least three times the amount 
of resources.”

JPMorgan Chase:

27© Alex Ufkes, 2020, 2022



Smalltalk popularity? A dead language?
https://medium.com/smalltalk-talk/smalltalk-and-the-future-of-the-

software-industry-3f69cac13e5a

“One of the goals of Smalltalk was to make it very easy to teach 
programming to children.”

“I believe the best way to teach beginners how to program is with a good 
teaching language. Languages like Java, Python, JavaScript, C#, C/C++, 
PHP, Ruby are all industrial languages; they carry a lot of industrial 
baggage that can get in the way of a beginner.”

28© Alex Ufkes, 2020, 2022



Smalltalk popularity? A dead language?
https://www.quora.com/Why-did-the-Smalltalk-programming-language-

fail-to-become-a-popular-language

“The popular story that's been around is that Sun killed Smalltalk with 
Java. That seems to be partly true…”

“I think what prevented Smalltalk from increasing in popularity was the 
popularity of developing for the internet…”

“The dominant idea in the Smalltalk community in the '90s was that it 
was a GUI desktop platform, and that's where it should stay.”

29© Alex Ufkes, 2020, 2022



Loved: % of people 
currently using that 
want to keep using

30© Alex Ufkes, 2020, 2022



• Smalltalk disappears.
• Not sure why, but I think they 

didn’t include it in the survey.
• Rust still on top!

31© Alex Ufkes, 2020, 2022



Dreaded: % of people 
currently using that 
no longer want to.

32© Alex Ufkes, 2020, 2022



Wanted: % of people not 
using who want to use

Important!
• This refers to what individual 

developers want to use.
• It does not necessarily reflect 

what the market wants

33© Alex Ufkes, 2020, 2022



“Object-oriented programming is an 
exceptionally bad idea which could only 
have originated in California.”

34

Leaving OOP Behind

“Object-oriented programs are offered 
as alternatives to correct ones…”

- Edsger Dijkstra

© Alex Ufkes, 2020, 2022



35
https://www.reddit.com/r/ProgrammerHumor/comments/418x95/theory_vs_reality/

What OOP users claim:
What actually happens:

Leaving OOP Behind

© Alex Ufkes, 2020, 2022

https://www.reddit.com/r/ProgrammerHumor/comments/418x95/theory_vs_reality/


36© Alex Ufkes, 2020, 2022



Object Oriented Programming:
• “Pure” OO languages treat even 

primitives and operators as objects
• Java/C++ and others support OOP 

to greater or lesser degrees.

Functional Programming:
• Avoid changing state, avoid 

mutable data
• Declarative rather than imperative
• Tell the program where to go, not 

how to get there.

Two widely used paradigms:

Alternatives to Imperative?

37© Alex Ufkes, 2020, 2022



Functional Programming

38© Alex Ufkes, 2020, 2022



Declarative programming paradigm:
• Style of building and structuring computer programs.
• Functional programming languages are characterized by a declarative style.
• Express the logic of a computation rather than explicit control flow.?

The order in which individual statements, instructions or function 
calls of an imperative program are executed or evaluated.

Emphasis on explicit control flow is one thing that separates 
imperative languages from declarative languages.

Declarative VS Imperative

39© Alex Ufkes, 2020, 2022



Determined using 
control structures in 

imperative languages.

Control Flow

40© Alex Ufkes, 2020, 2022



CCPS 310/590 Example

At the machine instruction level, 
control flow works by altering the 

program counter.

Program counter tells the OS which 
instruction to fetch next.

41© Alex Ufkes, 2020, 2022



Declarative language syntax describes the logic of an algorithm

Imperative languages implement algorithms as a sequence of explicit 
steps (statements, control flow) 

The declarative paradigm allows developers to worry about 
the what, not the how.

The how is left up to the language’s implementation (compiler/interpreter)

Declarative VS Imperative

42© Alex Ufkes, 2020, 2022



Machine code is imperative.

Functional programs compile into machine code, just like 
imperative ones.

The distinction is in what the programmer is required to think about, 
and what the language hides behind the scenes.

Always Remember!

43© Alex Ufkes, 2020, 2022



The actual, practical difference between these two paradigms 
can be very hard to grasp.

How can we program without thinking about control flow?

What makes a language declarative? 
The fact that it’s not imperative.

Declarative VS Imperative

44© Alex Ufkes, 2020, 2022



• This C++ code is imperative
• We use a control structure (for loop) 

to tell the program to iterate.
• Even specify how this iteration is done.
• Initialization, condition, update 

Faking it in C++

45© Alex Ufkes, 2020, 2022



• Simulate declarative programming 
using preprocessor directives.

• Directives here are basically a list 
of substitutions

• Assume that this is done by the 
programming language behind the 
scenes.

Faking it in C++

46© Alex Ufkes, 2020, 2022



ALoop(5, PrintWord("declarative"));

Faking it in C++

Directives here are basically 
a list of substitutions

47© Alex Ufkes, 2020, 2022



Faking it in C++

ALoop(5, PrintWord("declarative"));

LOOP_5 (action)
LOOP_5 (PrintWord("declarative"))
LOOP_5 (cout << word << endl;)

Directives here are basically 
a list of substitutions

action

cout << word << endl;

48© Alex Ufkes, 2020, 2022



Faking it in C++

ALoop(5, PrintWord("declarative"));

LOOP_5 (action)
LOOP_4 (action) action
LOOP_3 (action) action action
LOOP_2 (action) action action action
LOOP_1 (action) action action action action
action action action action action

Directives here are basically 
a list of substitutions

action

cout << word << endl;

49© Alex Ufkes, 2020, 2022



Imagine this was all done 
behind the scenes by the 

implementation of the 
programming language

Faking it in C++

50© Alex Ufkes, 2020, 2022



for (int i = 0; i < 5; i++)
{

cout << "Imperative" << endl;
}

ALoop(5, PrintWord("declarative"));

Imperative:
• Programmer specifies 

control flow
• Each loop iteration 

explicitly defined

Declarative (C++ fakery):
• Programmer says what 

they want
• Nevermind how it’s done

Declarative VS Imperative

51© Alex Ufkes, 2020, 2022



Functional Programming

Depends what you’re doing, depends who you ask…
52© Alex Ufkes, 2020, 2022



Functional programming languages are characterized by a declarative style.

Functional are not the only 
declarative languages:

Functional Programming

53© Alex Ufkes, 2020, 2022



The line between imperative/OOP and functional programming is grey.

Code can be written in a functional style using a language not specifically 
designed for functional programming.

Some languages are designed to be functional, but still contain 
imperative elements.

Always Remember!

54© Alex Ufkes, 2020, 2022



• Avoids changing global state, no state to reason about.
• Avoid global variables, keep scope as tight/local as possible

Functional Language Characteristics

No side effects!

55

Things that are generally foreign to imperative programming:

© Alex Ufkes, 2020, 2022



A function can be said to have a side effect if it has an observable 
interaction with the outside world aside from returning a value.

• Modify global variable
• Raise an exception
• Write data to display or file

Side Effects?

56

Things that are generally foreign to imperative programming:

© Alex Ufkes, 2020, 2022



Function/method output can depend on history (or current state):

• Call the same function, with the 
same argument, 5 times.

• Different result each time.
• Common in imperative languages.
• Rare in functional languages.

Side Effects

57© Alex Ufkes, 2020, 2022



• The output of a function depends solely on the input arguments 
o No side effects, no dependence on global or local state.

• This makes it much easier to predict the behavior of a program
o Primary motivation for developing functional programming

• With no state to be concerned of, parallel processing becomes 
much easier. No race conditions!
o Functions can be spawned as separate threads/processes

Side Effects

58

Declarative/functional languages avoid side effects

© Alex Ufkes, 2020, 2022



Pure functions are emphasized/enforced:
• Pure function? A function without side effects
• If the return value of a pure function is not used, the 

function can be safely removed.
• Output depends solely on input (referential transparency).
• Pure functions without a data dependency can be executed 

in any order. Safe to parallelize (thread-safe).

Things that are generally foreign to imperative programming:

59

Functional Language Characteristics

© Alex Ufkes, 2020, 2022



• In practice it’s unreasonable to have a programming 
language containing only pure functions.

• This would preclude things like file I/O and user input.
• Common to have a pure function “core” surrounded by 

impure functions that interact with the outside world
• This is true of Elixir, but depends on the language.
• Pure functions can be written in any language, but 

functional languages enforce them in various ways.

Quick Note

60© Alex Ufkes, 2020, 2022



Flow control accomplished with functions calls.
• We already saw in Smalltalk how this is possible
• Much lower focus on loop/if-else/case constructs.
• Collections are operated upon using recursion.

Specifically, tail recursion in Elixir. Tail recursion is recognized and optimized 
by the compiler into iterative machine code. Tail Call Optimization.

61

Functional Language Characteristics

Functions and recursion are central:

© Alex Ufkes, 2020, 2022



mult(3, 4)
3+mult(3, 3)
3+(3+mult(3, 2))
3+(3+(3+mult(3, 1)))
3+(3+(3+(3+mult(3, 0))))
3+(3+(3+(3+0)))
12

Recursion

62© Alex Ufkes, 2020, 2022



tail_mult(3, 4, 0)
tail_mult(3, 3, 3) 
tail_mult(3, 2, 6) 
tail_mult(3, 1, 9) 
tail_mult(3, 0, 12)
12

Tail Recursion

63© Alex Ufkes, 2020, 2022



mult(3, 4)
3 + mult(3, 3)
3 + (3 + mult(3, 2))
3 + (3 + (3 + mult(3, 1)))
3 + (3 + (3 + (3 + mult(3, 0))))
3 + (3 + (3 + (3 + 0)))
12

tail_mult(3, 4, 0)
tail_mult(3, 3, 3) 
tail_mult(3, 2, 6) 
tail_mult(3, 1, 9) 
tail_mult(3, 0, 12)
12

Every recursive call must complete before 
we even begin adding values

Here, total is updated each call. 
This version looks a lot more 
like iteration. Optimizable.

Tail Recursion

64© Alex Ufkes, 2020, 2022



Things that are generally foreign to imperative programming:

First class functions and higher order functions:
• Functions that return functions or accept them as arguments

o I.e., differential operator. Derivative of function is a function.
• “First class” describes programming language entities that have 

no restriction on their use.
• I.e., first class functions can appear anywhere in the program 

that other first-class entities (such as numbers) can.
o Functions as arguments & return values, function literals, etc.

Functional Language Characteristics

65© Alex Ufkes, 2020, 2022



The line between imperative and 
functional programming is grey.

C supports passing functions as 
arguments via function pointers.

Always Remember…

66© Alex Ufkes, 2020, 2022



Strict (eager) VS. non-strict (lazy) evaluation:
• Strict: Always evaluate function arguments before invoking the function.
• Lazy: Evaluates arguments if their value is required to invoke the function.

print length( [2+1, 3*2, 1/0, 5-4] );

• Fails under strict evaluation, can’t divide by zero.
• Under lazy evaluation we get the correct value of 4. We don’t need to know 

the actual values of the array elements to know how many there are.

Things that are generally foreign to imperative programming:

67

Functional Language Characteristics

© Alex Ufkes, 2020, 2022



Easier to reason about pure functions:
• If the function is internally consistent, it is always correct.
• No tracking down global variables, tracing pointers/references, etc.

Functional Programming: Advantages

68© Alex Ufkes, 2020, 2022



Concurrent programming is easier:
• No side effects, functions can be spawned as processes/threads.
• There is no state to be shared between different threads.
• No need for semaphores (or similar) if you don’t have side effects!

o Pure functions never access or modify things outside their scope
o No such thing as a race condition when values are immutable.

Functional Programming: Advantages

69© Alex Ufkes, 2020, 2022



Programs are easier to understand:

for (int i = 0; i < 5; i++)
{

cout << "Imperative" << endl;
}

ALoop(5, PrintWord("declarative")); • Do something 5 times

• Allocate space for variable i
• Initialize i to 0
• Iterate as long as i is less than 5
• Increment i after each iteration

Functional Programming: Advantages

70© Alex Ufkes, 2020, 2022



Recursion can cause memory use to explode:
• Operating on a list with 10000 items requires 10000 

recursive calls. Stack explodes
• Tail recursion mitigates this but using tail recursion can 

often require inelegant code gymnastics.

71

Functional Programming: Disadvantages

© Alex Ufkes, 2020, 2022



No assignment statements, data is immutable:
• Performing actions requires allocating new memory.
• Remember strings in Java – Changing the value of a 

string creates a new string object with the new value.
• Garbage collection very important!

72

Recursion can cause memory use to explode:
• Operating on a list with 10000 items requires 10000 

recursive calls. Stack explodes
• Tail recursion mitigates this as we saw, but using tail 

recursion can often require inelegant code gymnastics.

Functional Programming: Disadvantages

© Alex Ufkes, 2020, 2022



Only predated by FORTRAN

73© Alex Ufkes, 2020, 2022



74© Alex Ufkes, 2020, 2022



History: Erlang
• Proprietary language used at Ericsson, 

developed by Joe Armstrong
• Initially implemented in Prolog at Ericsson
• By 1988, it had been proven suitable for 

prototyping telephone exchanges but…
• Prolog interpreter was much too slow, 

needed to be 40x faster.
• In 1992 work began on BEAM VM

o Compiles Erlang to C
o Balance performance and disk space.

• Went from lab to real applications by 1995
• In 1998, Ericsson banned internal use of 

Erlang, causing Armstrong to quit.
o Rehired in 2004, after ban was lifted.

75© Alex Ufkes, 2020, 2022



History: Elixir
• Builds on Erlang, runs on BEAM VM
• Erlang was prolog-like, Elixir is more 

conventional.
• First appeared in 2011
• Developed by Jose Valim as an R&D 

project at Plataformatec (consulting firm)
• Used at Pinterest, and for web 

development by Discord.

76© Alex Ufkes, 2020, 2022



• Elixir is a functional programming language
o Mostly immutable, rich support for concurrency

• Everything is an expression. 
o Everything evaluates to something.

• Elixir compiles into Erlang bytecode.
o Thus, Erlang functions can be called from Elixir

• Emphasizes recursion and higher-order functions
o As opposed to side-effect-based looping

Elixir: Overview

77© Alex Ufkes, 2020, 2022



• Elixir code runs inside lightweight threads of execution.
o Isolated, exchange information via message passing.

• Not uncommon to have hundreds of thousands of 
processes running concurrently in same VM.
o Note: These are NOT operating system processes!
o Extremely lightweight in terms of CPU and memory
o A process need not be an expensive resource

Elixir: Processes

78© Alex Ufkes, 2020, 2022



https://elixir-lang.org/

Installing Elixir

79© Alex Ufkes, 2020, 2022



80© Alex Ufkes, 2020, 2022



Better than just a terminal window

Erlang Shell

81© Alex Ufkes, 2020, 2022



IDEs exist, but you’re on your own. I won’t help troubleshoot IDE-related problems.

This is the Erlang shell. We can: 
• Type code into here line by line
• Copy and paste code into here large chunks at a time
• Define modules and functions – though it’s tedious.

Play around in the interactive shell or do things from the command line.

Writing and Compiling Elixir

82© Alex Ufkes, 2020, 2022



© Alex Ufkes, 2020, 2022 83

replit



84

https://elixir-lang.org/getting-started/introduction.html

https://hexdocs.pm/elixir/master/api-reference.html#content

https://media.pragprog.com/titles/elixir/ElixirCheat.pdf

Elixir References

© Alex Ufkes, 2020, 2022



• Double dispatch 
• Smalltalk conclusion
• Functional paradigm
• Getting started with Elixir

85

Summary

© Alex Ufkes, 2020, 2022



86© Alex Ufkes, 2020, 2022


