C/CPS 506

Comparative Programming Languages
Prof. Alex Ufkes

Topic 3: Out with Smalltalk, in with Elixir
University

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit

permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Course Administration (CCPS)

n =N CCPS506 - Comparative Programming La... 88 & & [\ Nexander Ufkes O3

Content Grades Assessment ~» Communication » Resources » Classlist Course Admin

* Assignment description is posted!
* If you liked Smalltalk, you could start
working on the Smalltalk version.

© Alex Ufkes, 2020, 2022 3

Today

© Alex Ufkes, 2020, 2022

Double dispatch
Smalltalk conclusion
Functional paradigm
Getting started with Elixir

4

Method “Overloading’

22

20

© Alex Ufkes, 2020,

g e § &

Method Overloading

Methods are overloaded through differing parameter lists:

public class ArraylListTest

{

public static int add (int x)

{

return x + x,;

}

public static int add (int x, int y)
{

return x + vy;

}

public static void main(String[] args)
{
System.out.println(add(5));
System.out.println(add(5, 2));
}

© Alex Ufkes, 2020, 2022

In Java, method name and
parameter list are independent.

In Smalltalk, they are
fundamentally linked

Method Overloading

* In Smalltalk, there is no overloading in this fashion.

 We cannot have a single message that optionally
accepts differing numbers of arguments.

* When we add another argument, the method name
changes.

© Alex Ufkes, 2020, 2022

Method Overloading

When we add another argument, the method/message name changes.

timeToRun

value
value and value: are
different names
value:value: e value: and value:value:
value:value:value: are different names

And so on

value:

value:value:value:value:

© Alex Ufkes, 202

Method Overloading

* All well and good, but what about the same number of
arguments with different types?
* InJava, compiler sees these as different:

public int add(int x, int y)
public double add(double x, double y)

* In Smalltalk, argument types aren’t checked upon message pass.

* Invoking a method (passing a message) only fails when receiving
object can’t handle the message.

* We get a Did Not Understand error (DNU).

© Alex Ufkes, 2020, 2022

Method Overloading

However! The following code succeeds!

Playground Transcript

Page SmallInteger
BoxedFloate4d

-
Transcript show: . 7 B
Transcript show:

Transcript show:
Transcript show:

* Pass + message to SmallInteger 3 with SmallInteger argument 4
* Pass + message to SmallInteger 3 with BoxedFloat64 argument 4.0
 Same message, same receiving class, different kind of argument. How?

© Alex Ufkes, 2020, 2022

et’s Investigate!

Smallinteger==#+

scoped Variables
T Pkgl|*Pkg2|Pk.*C SmallFloaté4 —all -- *
] Iceberg-Plugin-GitHub Fraction arithmetic t
EJ Iceberg-Ul ScaledDecimal bit manipulation -
EJ ImportingResource-Help Integer comparing
[] IssueTracking Largelnteger converting
E lJESEETHEkI ng-Tests LargeMegativelnteger copying <
obs i : :
B JobsTests LargePositivelnteger mathematical functions =
> 2 Kernel Smallinteger pointers _
EJ Kernel-Rules Time printing >
EJ Kernel-Tests Timespan ® private =
E Kernel-Tests-Rules = Hier. | @ Class Com. system primitives

+ aNumber

<primitive: 1>

R Invoke superclass addition

B Algkiu M Formatasyouread W +L 1

Integer=>§+

Scoped Variables
Tvpe: Pkell*Pke?|Pk.*Core smallFloats4 —-all -- &
E1 Iceberg-Plugin-GitHub Fraction ACCESSINg
ScaledDecimal arithmetic +

B Iceberg-Ul
EJ ImportingResource-Help
B3 IssueTracking
B3 IssueTracking-Tests
EJ Jobs
EJ JobsTests
» 3 Kernel

Integer
Largelnteger
LargeNegativelnteger
LargePositivelnteger
smallinteger

benchmarks

bit manipulation
comparing
converting
converting-arrays

EJ Kernel-Rules e enumerating =
EJ Kernel-Tests Timespan mathematical functions -
Ea HEI’HE[-TE.S’[S-RMES Date printing >
Keymapping-Core =, Hier. | @ Class 7 Com. printing-numerative >=

+ aNumber

aNumber disInteger ifTrue:
[negative == aNumber negative
ifTrue: [* (digitAdd: aNumber) normalize]

ifFalse: | digitSubtract: aNumber]].

aMumber disFraction ifTrue:
[*Fraction numerator:

aNumber adaptToInteger: andSend:

* aNumber denominator + aNumber numerator denominator: aNumber denominator].

3(8 [47] M Formatasyouread W +L

 Checkif argument is integer.
* Ifso, it’s an integer expression
and we can react accordingly

+ aNumber

* Check if operands have same sign
aNumber isInteger ifTrue: ° negative returns Boolean

[negative == aMumhar nasativa
ifTrue: [(digitAdd: aNumb:r) normalize]
ifFalse: [digitSubtract: iNumber]].

aNumber isFraction iflrue:

[“Fraction numerator: * aNumber denominater + aNumber numerator denominator: aMumber denominator].
aNumber adaptToInteger: andSend:

© Alex Ufkes, 2020, 2022 13

E j;;;Tests Fraction enumerating decimalDigitLength
» B2 Kernel ScaledDecimal mathematical functions denominator
B3 Kernel-Rules Integer printing destinationBuffer:
EJ Kernel-Tests Largelnteger printing-numerative digitAdd:
E Kernel-Tests-Rules = Hier. O Class 7 Com. | = private digitAt:base:
digitAdd: arg
| len arglen accum sum
<primitive: 'primDigitAdd' module:'Largelntegers'>
accum := @.
(len := digitLength) < (arglen := arg digitLength) ifTrue: [len := arglen].
sum := Integer new: len neg: negative.

1 to: len do:

i
.

accum := (accum bitShift: -8
+ digitAt: 7) + (arg digitAt: 7).

sum digitAt: 7 put: (accum bitAnd: 255)].

ifTrue:
[sum := sum growby: 1.
sum at: sum digitLength put:] (accum bitShift: -8)].
SUM
1/17 [1] M Formatasyouread W +L
A Refers to class name instead of "self class” 7 X Helpful?

@ [digitAt:] Super and Self Messages sent but not implemented 7 X Helpful?

+ aNumber

aNumber isInteger ifTrue: If arg iSFPaCtion’ we can still
[negative == aNumber negative add precise|y using numerator
and denominator

ifTrue: [(digitAdd: aNumber) normalize]
ifFalse: [digitSubtract: aNumberl]
aNumber isFraction ifTrue:
[*Fraction numerator: * aNumber denominator + aNumber numerator denominator: aNumber denominator].
aNumber adaptTolInteger: andSend:

If arg is neither fraction nor integer, we send it
adaptToInteger:andSend: message

© Alex Ufkes, 2020, 2022 15

adaptToInteger:andSend:

U U STy

1 ImportingResource-Help Character comparing absPrintOn:base:digitCoun

[7 IssueTracking DateAndTime converting « adaptToFraction:andComg
[E1 IssueTracking-Tests
» [1 Jobs

3 JobsTests ; .
» B2 Kernel Float mathematical functions adaptTolnteger:andSend:

[£] Kernel-Rules BoxedFloat64 printing « arcCos
» [E] Kernel-Tests SmallFloat64 private « arcSin
£ Kernel-Tests-Rules « Hier. | @Class : testing ® arcTan:

Duration copying «~ adaptToFraction:andSend:
Number instance creation « adaptTolnteger:andCompsz

adaptTolnteger: rcvr andSend: selector

rcvr asFloat perform: selector with:

* Convert original receiving integer to floating point
* Perform addition between two BoxedFloat64

* It’s now a problem for the Float class implementation of +!
© Alex Ufkes, 2020, 2022

Double Dispatch

* Method overloading not possible in Smalltalk.
e Uses the previous technique instead, called double dispatch
* Double/multiple dispatch is not unique to Smalltalk.

Double Dispatch:

* Broadly: Make additional method/function calls based on the
types of the objects involved in the original call at runtime.

* l.e, ifargis float, invoke method for floating point addition.

* Overloading is done at compile time; double dispatch occurs
at runtime.

© Alex Ufkes, 2020, 2022

17

Double Dispatch

Overloading is decided at compile time, double dispatch at runtime.

* In Smalltalk (double dispatch), the same method gets invoked
regardless of the argument type. Same message regardless!

* Secondary method call(s) occur in the body of the first
method, depending on argument type.

* InJava, a different method gets invoked from the very start
depending on the type of the argument.
 Decided at compile time (early binding).

Explore this on your own for some of the other types and operators

© Alex Ufkes, 2020, 2022

18

Late VS Early Binding

Dynamic/late binding VS static/early binding

Late binding

* Method is looked up at runtime

* Often as simple is searching name
* Symbol comparison in Smalltalk
 Method not found = runtime error
e Costlier at runtime

Early binding

 Method to be called is found at
compile time

e Method not found = compile error

 More efficient at runtime

Double dispatch happens at runtime, late binding

© Alex Ufkes, 2020, 2022

19

This concludes your
Smalltalk crash course!

Let’s finish with a
high-level summary.

© Alex Ufkes, 2020, 2022

Smalltalk Syntax

Extremely minimalist:
* Only five reserved “keywords”: true, false, nil, self, super
e Java has 50, C++ has 82, C has 32

Playground - Playground

¥ y Se Name already defined -»

“Smalltalk syntax fits on a postcard”

Unary messages

Method with argument:

Binary messages

Block

Temporary ,
: examplelithNumber: x
variable v |

true & false not & (nil isNil) ifFalse: [self halt].

y 1= self size + super size.
O e [zeach | | Keyword message |
T Keyword message
array

Transcript show: (each class name);

show: ° '].
KLY Pass do: message with
Return result block argument to array

© Alex Ufkes, 2020, 2022 22

Smalltalk Extensibility

We are free to modify core Smalltalk classes and methods:

True>>#ifTrue:ifFalse:
Scoped Variables

BenchmarkResult - all --
BJd JUUSITESLL
» E3 Kernel
[EJ Kernel-Rules
B3 Kernel-Tests
] Kernel-Tests-Rules
B3 Keymapping-Core
] Keymapping-KeyCombinations
EJ Keymapping-Pragmas
EJ Keymapping-Settings
EJ Keymapping-Tests
3 Keymapping-Tools-Spec *_ Hier. @ Class

BlockClosure controlling

FullBlockClosure converting and:

Boolean logical operations
asBit

ifFalse:

False printing
True
Categorizer ifFalse:ifTrue:
ifTrue:

ifTrue:ifFalse:

ClassOrganization

P0PRPPPRPOO

CombinedChar

not

nr

ifTrue: trueAlternativeBlock ifFalse:

Amuse your friends! Confound your enemies!

We are free to modify core Smalltalk classes and methods:

1fTrue: trueAlternativeBlock 1fFalse: falseAlternativeBlock

falseAlternativeBlock value

Beware: You WILL cause havoc and be forced to create a new Pharo image.
 The Pharo live environment is using these very methods in a JIT fashion.
 Changing True to False means Pharo itself thinks True is False.

© Alex Ufkes, 2020, 2022

24

Smalltalk Semantics

“A compiler will complain about syntax, your coworkers will complain about semantics”

Always remember:

1. Everythingis an object

2. Computation is done by passing messages to objects.

3. Message precedence: unary, binary, keyword.
 Equal precedence evaluates left to right

Everything else follows from these principles.

© Alex Ufkes, 2020, 2022

25

Smalltalk

* Has garbage collection (like Java)
e Best-in-class IDE (according to fans).
o Class browser, playground, debugger, transcript, etc.
e Just-in-time compilation (JIT)
o Code executed in a live environment
* Image-based development

© Alex Ufkes, 2020, 2022

26

Smalltalk popularity? A dead language?
https://medium.com/smalltalk-talk/who-uses-smalltalk-c6fdaa6319a

JPMorgan Chase:

“Around the time that Java was just being introduced to the world, the
banking giant rolled out a new financial risk management and pricing
system called Kapital, written entirely in Cincom Smalltalk.”

“JPMorgan estimates that developing and maintaining this system in
any other language would’ve required at least three times the amount

of resources.”

© Alex Ufkes, 2020, 2022

27

Smalltalk popularity? A dead language?

https://medium.com/smalltalk-talk/smalltalk-and-the-future-of-the-
software-industry-3f69cacl3e5a

“One of the goals of Smalltalk was to make it very easy to teach
programming to children.”

“I believe the best way to teach beginners how to program is with a good
teaching language. Languages like Java, Python, JavaScript, C#, C/C++,

PHP, Ruby are all industrial languages; they carry a lot of industrial
baggage that can get in the way of a beginner.”

© Alex Ufkes, 2020, 2022

28

Smalltalk popularity? A dead language?

https://www.quora.com/Why-did-the-Smalltalk-programming-language-
fail-to-become-a-popular-language

“The popular story that's been around is that Sun killed Smalltalk with
Java. That seems to be partly true...”

“I think what prevented Smalltalk from increasing in popularity was the
popularity of developing for the internet...”

“The dominant idea in the Smalltalk community in the '90s was that it
was a GUI desktop platform, and that's where it should stay.”

© Alex Ufkes, 2020, 2022 29

E]]é Most Loved, Dreaded, and Wanted

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

ﬁ Rust
q Smalltalk

TypeScript

Swift

Go

Python

el Elixi
C#

Scala

Clojure

JavaScript

F#

© Alex Ufke &T0T0~D022" askel

EE T 56.2%
CE T 545%

Loved: % of people
currently using that
want to keep using

30

r“_§ Most Loved, Dreaded, and Wanted

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

Rust 78.9%
Kotlin 75.1%
Python G&8.0%

TypeScript 67.0%

* Smalltalk disappears.

* Not sure why, but | think they
didn’t include it in the survey.

* Rust still on top!

Go B656%

Swift 65.1%
JavaScript 51.9%
C# 60.4%

F# E96%

© Alex Ufkes, 2020, 2022 31

r“§ Most Loved, Dreaded, and Wanted

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

Visual Basic 6
Cobal
CoffeeScript
VB.NET
VBA

Matlab
Assembly
Perl
Objective-C
Lua

Groovy

Delphi/Object Pascal

© Alex Ufkes, 2020, 2022 ©

89.9%

84.1%

82.7%

80.9%

80.0%

77.4%

71.4%

71.3%

68.2%

66.4%

65.1%

o
[
o
=
&

Dreaded: % of people
currently using that
no longer want to.

32

r“? Most Loved, Dreaded, and Wanted

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

Wanted: % of people not
using who want to use

Python 25.1%
JavaScript 19.0%
Go 16.2%

Kotlin -~ 12.4%

TypeScript 11.9%

Important!
e This refers to what individual

Java 10.5%

:t ;; developers want to use.
ct 80% * |t does not necessarily reflect
Swit 77% what the market wants
HTML 76%
C55 T76%

© Alex Ufkes, 2020, 2022

Leaving OOP Behind

“Object-oriented programming is an
exceptionally bad idea which could only
have originated in California.”

“Object-oriented programs are offered
as alternatives to correct ones...”

- Edsger Dijkstra

© Alex Ufkes, 2020, 2022 34

Leaving OOP Behind

What OOP users claim:

uhn:mal

].o] 0;:
oHuman oPat
legs = 2 legs = 4;
fleas = 0;

\

ocDog olCat
fleas = 8; fleas = 4;

© Alex Ufkes, 2020, 2022

What actually happens:

o

0 Legdable £
thrcw[pablic Ant get " ount ()

,} b Fdabhle
[— blic lint getFlaaCount()
[3

fleas = i e
s/

|.\ ct.ar)r
‘ :

C -

¥
Ex&ornﬂl Logging Frameworlk

https://www.reddit.com/r/ProgrammerHumor/comments/418x95/theory vs reality/

throw public static
AbstractObjectPatternContainer
Exceptioncatchar
.'- ohnimal [AbstractInterfaceFactory

: \.‘,{ i
{ fleaf - : ‘\ \ “ public static
V ‘l ' nbstractoh]ectﬁ'atternconta:l.n
L'\.-

35

https://www.reddit.com/r/ProgrammerHumor/comments/418x95/theory_vs_reality/

© Alex Ufkes, 2020, 2022

. I hatla problem gy

) Al gorithmen
l

=== Nowi lliaic al :
!
._I'roblemractorv_-

36

© Ale

Alternatives to Imperative?

Two widely used paradigms:

Functional Programming:

Avoid changing state, avoid
mutable data

Declarative rather than imperative
Tell the program where to go, not
how to get there.

37

Functional Programming

© Alex Ufkes, 2020, 2022

38

Declarative VS Imperative

Declarative programming paradigm:
e Style of building and structuring computer programs.

* Functional programming languages are characterized by a declarative style.

* Express the logic of a computation rather than explicit control flow.

The order in which individual statements, instructions or function
calls of an imperative program are executed or evaluated.

Emphasis on explicit control flow is one thing that separates
imperative languages from declarative languages.

© Alex Ufkes, 2020, 2022

39

Control Flow

public static void main(String[] args)

{

Scanner in = new Scanner(System.in);

System.out.print("Enter a temperature: ");
int temp = in.nextInt();

if (temp >= 28)

System.out.println("Warm outside!");
else

System.out.println("Cool outside!");

© Alex Ufkes, 2020, 2022

Determined using

control structures in
imperative languages.

40

Feich Stage Execute Stage

Memory CPU Registers Memory CPU Registers

300[T 9 4 0 300|PC [300[T 840 30 1|PC

3&[]15+_;|41l> ac|301[3 031 000 3] AC

302(2 0 4 1 104 0|IR 3021941]19401& CCPS310/590 Example
040[0 0 0 3 040[0 0 0 3

041{0 0 0 2 041{0 0 0 2

Step 1 Step 2 At the machine instruction level,
Memory CPLU Registers | Memory CPLU Registers control flow works by altering the
300[T 0 4 0 30 1|PC |300[T 040 30 2|PC Y 8
301[5 0 4 1 000 3|AC|301[50 4 1 000 5|AC program counter.
32041 W5o4 IR 3022941<594j

040[0 0 0 3 040[0 0 0 3 3+2=3 .
04100 0 2 M A, Program counter tells the OS which
Step 3 Step 4 instruction to fetch next.
Memory CPU Registers Memory CPU Registers

300[T 9 4 302|PC |30[T 040 30 3|PC

3015 0 4 1 D00 3]AC|301[3 0 4 1 000 5]AC

3220 4 1—»{2 04 1|IR |302[2 0 4 1 204 1R

040[0 0 0 3 040[0 0 0 3

941[0 0 0 2 941[0 0 0 5

Step 3 Step 6

© Alex Ufkes, 2020, 2022 41

Declarative VS Imperative

Imperative languages implement algorithms as a sequence of explicit
steps (statements, control flow)

Declarative language syntax describes the logic of an algorithm

The declarative paradigm allows developers to worry about
the what, not the how.

The how is left up to the language’s implementation (compiler/interpreter)

© Alex Ufkes, 2020, 2022 42

Always Remember!

Machine code is imperative.

Functional programs compile into machine code, just like
imperative ones.

The distinction is in what the programmer is required to think about,
and what the language hides behind the scenes.

© Alex Ufkes, 2020, 2022

43

Declarative VS Imperative

The actual, practical difference between these two paradigms
can be very hard to grasp.

How can we program without thinking about control flow?

What makes a language declarative?
The fact that it’s not imperative.

© Alex Ufkes, 2020, 2022

44

Faking it in C++

* This C++ code is imperative

* We use a control structure (for loop)
namespace std; to tell the program to iterate.
* Even specify how this iteration is done.
* [nitialization, condition, update

B0 ChUsershaufke\Desktop\AZ_template\D... —

Impersa
Imper:
Imper:
Imper:
Imper:

Press

T o

o

' D

o

I
=~ = =~ ™

) Hr e e
I

"

v to continue

[N
=

© Alex Ufkes, 2020, 2022

Faking it in C++

de <iostream>

= std;

(word) cout << word << endl;

(n, action) LOOP_ ## n (action)

int main(void)

© Alex Ufkes, 2020, 2022

(action) LOOP_4(action) action
(action) LOOP_3(action) action
(action) LOOP_ 2(action) action
(action) LOOP_1(action) action

(action) action

Simulate declarative programming
using preprocessor directives.
Directives here are basically a list
of substitutions

Assume that this is done by the
programming language behind the
scenes.

46

(word) cout << word << endl;
R [J [] [J
(N, accion) LOUP %% n Laction) Faklng It In C++
(action) LOOPW4(action) action
(action) LOOP B(action) action

(action) LOOP A action) action Directives here are basically
(action) LOOP_1gaction) action alist ofsubstitutions

(action) action

PrintWord("declarative™)

© Alex Ufkes, 2020, 2022

cout << word << endl;

LOOP7 ## n (action) Faking it in C++

action

[action) OOP:B{actionj action
(action) LWOP_2(action) action Directives here are basically
a list of substitutions

(action) LOPP _1(action) action
(action) ac®on

ALoop(5, PrintWord("declarative")); action

| v

, cout << word << endl;
LOOP_5 (action)

LOOP_5 (PrintWord("declarative"))
LOOP_5 (cout << word << endl;)

© Alex Ufkes, 2020, 2022 48

(word) cout << word << endl;

(n__artion) 100P ## n (artion) Faking it in C++

(action) LOOP_4(action) action

(action) LOOP 3(action) action
(action) LOOP 2(action) action Directives here are basically

(act ion:‘) LOOP_1(action) action a list OfSUbStitUtiOnS

(action) action

ALoop(5, PrintWord("declarative")); action

\

\

LOOP_5 (action)

LOOP 4 (action) action

LOOP_3 (action) action action

LOOP_2 (action) action action action
LOOP_1 (action) action action action action
action action action action action

cout << word << endl;

© Alex Ufkes, 2020, 2022 49

Faking it in C++

Imagine this was all done
behind the scenes by the

(word) cout << word << endl;
(n, action) LOOP_ ## n (action)
(action) LOOP 4(action) action

implementation of the
programming language

(action) LOOP 3(action) action

(action) LOOP 2(action) action

(action) LOOP 1(action) action
(action) action B ChUsers\aufke\Desktop'A2_template\Deb... — [

D

int main(void)

1 M

D

] I
=~ ~ ~ ™

I—-ll I—-Il I—-Il I—-II I—-ll
]

D

to continue

]
=
iy
T

© Alex Ufkes, 2020, 2022

Declarative VS Imperative

. . . . Imperative:
for (int 1 = 0; i < 5; i++) P .
{ * Programmer specifies
control flow

cout << "Imperative" << endl;

* Each loop iteration
explicitly defined

}

Declarative (C++ fakery):

ALoop(5, PrintWord("declarative")); * Programmer says what

they want
e Nevermind how it’s done

© Alex Ufkes, 2020, 2022

51

Functional Programming

MACHINE ASSEMBLY PROCEDURAL OBJECT ORIENTED FUNCTIONAL

‘ Depends what you’re doing, depends who you ask... ‘
© Alex Ufkes, 2020, 2022 52

Functional Programming

Functional programming languages are characterized by a declarative style.

& Lidlid-uren
« Declarative (confrast: Imperative)

e Functional
#» Functional logic
» Purely functional

s LoQic
Functional are not the only « Abductive logic
. # Answer set
declarative languages: « Concurrent logic

« Functional logic

» Inductive logic
s Constraint

» Constraint logic

« Concurrent constraint logic

s Dataflow

= Flow-bazed

« Cell-oriented (spreadsheets)

» Reactive

© Alex Ufkes, 2020, 2022 » Dynamic/scripting

« Event-driven

53

Always Remember!

The line between imperative/OOP and functional programming is grey.

Code can be written in a functional style using a language not specifically
designed for functional programming.

Some languages are designed to be functional, but still contain
imperative elements.

© Alex Ufkes, 2020, 2022

54

Functional Language Characteristics

Things that are generally foreign to imperative programming:

* Avoids changing global state, no state to reason about.
* Avoid global variables, keep scope as tight/local as possible

(1 =8; 1 < 3 odi++)
{

printf("valu= of 2 = %d ', aj;

printf(“"value «7 b = %&d ", b);

printf("valv< of o« = %d ", C);

printf("v-iue of d = %d \n", d); N 'd ff |
printf/ value of e = % ", e); O s’ e e eCtS'
prirf("value f =% \n".,);

Side Effects?

Things that are generally foreign to imperative programming:

A function can be said to have a side effect if it has an observable
interaction with the outside world aside from returning a value.

INPUT INPUT
* Modify global variable

} CHEE <Y

L AKBITR.BR\/ * Raise an exception

{_‘ * Write data to display or file
ov'ﬂ’v‘r

v

OVTPUT
© Alex Ufkes, 2020, 2022

56

Side Effects

Function/method output can depend on history (or current state):

public class SideEffect
{

private static int n = 0;

public static int retNum(int number) {
return (n += number);

}

public static void main(String[] args)

{
for (int 1 = 0; 1 < 5; i++)
System.out.println(retNum(1));

}

© Alex Ufkes, 2020, 2022

Call the same function, with the
same argument, 5 times.

Different result each time.

Common in imperative languages.

Rare in functional languages.

57

Side Effects

Declarative/functional languages avoid side effects

* The output of a function depends solely on the input arguments
o No side effects, no dependence on global or local state.
* This makes it much easier to predict the behavior of a program
o Primary motivation for developing functional programming
* With no state to be concerned of, parallel processing becomes
much easier. No race conditions!
o Functions can be spawned as separate threads/processes

© Alex Ufkes, 2020, 2022

58

Functional Language Characteristics

Things that are generally foreign to imperative programming:

Pure functions are emphasized/enforced:

© Alex Ufkes, 2020, 2022

Pure function? A function without side effects

If the return value of a pure function is not used, the
function can be safely removed.

Output depends solely on input (referential transparency).
Pure functions without a data dependency can be executed
in any order. Safe to parallelize (thread-safe).

59

Quick Note

© Alex Ufkes, 2020, 2022

In practice it’s unreasonable to have a programming
language containing only pure functions.

This would preclude things like file /O and user input.
Common to have a pure function “core” surrounded by
impure functions that interact with the outside world
This is true of Elixir, but depends on the language.

Pure functions can be written in any language, but
functional languages enforce them in various ways.

60

Functional Language Characteristics

Functions and recursion are central:

Flow control accomplished with functions calls.
* We already saw in Smalltalk how this is possible

* Much lower focus on loop/if-else/case constructs.
* Collections are operated upon usin

© Alex Ufkes, 2020, 2022

61

Recursion

public class Recursion

{
// Assume args > 0
public static int mult(int n1, int n2) {
if (n2 == 9)
return 6:
return n1 + mult(nl, n2-1);
Y
public static void main(String[] args)
{
System.out.println(mult(3,4));
Y
}

© Alex Ufkes, 2020, 2022

mult(3, 4)

3+mult(3, 3)
3+(3+mult(3, 2))
3+(3+(3+mult(3, 1)))

3+(3+(3+(3+mult(3, 9))))
3+(3+(3+(3+9)))
12

<& Bluel Termina... —

Options

12

62

Tail Recursion

public class Recursion

{ tail mult(3,
// Assume args > © tail_mU].t(3,
public static int tail_mult(int n1, int n2, int #tail mult(3,

if (n2 == 09) tail mult(3,

return total; tail mult(3
return tail_mult(ni1, n2-1, total+nl); - ’

12

}

public static void main(String[] args)
{ <& Bluek Termina... —

System.out.println(tail_mult(3,4,0)); Options

} 12

© Alex Ufkes, 2020, 2022

Tail Recursion

mult(3, 4)
+ mult(3, 3)
+ mult(3, 2))
(3 + mult(3, 1)))

+
+ (3 + (3 + mult(3, 9))))
+ (3 + (3 +0)))

Every recursive call must complete before
we even begin adding values

© Alex Ufkes, 2020, 2022

tail mult(3,
tail mult(3,
tail mult(3,
tail mult(3,
tail mult(3,
12

Here, total is updated each call.
This version looks a lot more
like iteration. Optimizable.

64

Functional Language Characteristics

Things that are generally foreign to imperative programming:

First class functions and higher order functions:
* Functions that return functions or accept them as arguments
o l.e., differential operator. Derivative of function is a function.
* “First class” describes programming language entities that have
no restriction on their use.
* |.e., first class functions can appear anywhere in the program
that other first-class entities (such as numbers) can.

o Functions as arguments & return values, function literals, etc.

© Alex Ufkes, 2020, 2022

65

Always Remember...

#include <stdio.h>
The line between imperative and

int addInt(int)))
] funCtlonaI programming is grey.

C supports passing functions as
void printInt(int(*x)(int, int), int a, int b; arguments via function pointers.

printf("result is %d \n

N ChUsers\aufke'\Desktop' A2_template\DebughA2_template
L int(*fPtr)(int, int);

fPtr - &addInt- ' to contlinue
Fr = &addInt;

printInt(fPtr, 3, 4);

Functional Language Characteristics

Things that are generally foreign to imperative programming:

Strict (eager) VS. non-strict (lazy) evaluation:
e Strict: Always evaluate function arguments before invoking the function.
* Lazy: Evaluates arguments if their value is required to invoke the function.

print length([2+1, 3*2, 1/0, 5-4]);

* Fails under strict evaluation, can’t divide by zero.
* Under lazy evaluation we get the correct value of 4. We don’t need to know
the actual values of the array elements to know how many there are.

© Alex Ufkes, 2020, 2022

67

Functional Programming: Advantages

Easier to reason about pure functions:
* |f the function is internally consistent, it is always correct.

* No tracking down global variables, tracing pointers/references, etc.

printf("valus of < = %d Y, oa);
printf(“"value ~ - b = %d ", b);
printf("val- e of ¢ = %d ", C);
printf(">alue of d = ™d ", d);
printf “value of e = %d Y,oe);
priatf("value of £ = &d W T);

System("pause”) ;

Functional Programming: Advantages

Concurrent programming is easier:

* No side effects, functions can be spawned as processes/threads.

* There is no state to be shared between different threads.

* No need for semaphores (or similar) if you don’t have side effects!
o Pure functions never access or modify things outside their scope
o No such thing as a race condition when values are immutable.

© Alex Ufkes, 2020, 2022

69

Functional Programming: Advantages

Programs are easier to understand:

for (int i = 0; i < 5; i++)

{

Allocate space for variable i
Initialize 1 to 0
lterate as long as 1 is less than 5

cout << "Imperative" << endl;
} * Increment 1 after each iteration

ALoop(5, PrintWord("declarative")); | ¢ Dosomething5 times

© Alex Ufkes, 2020, 2022 70

Functional Programming: Disadvantages

Recursion can cause memory use to explode:

* Operating on a list with 10000 items requires 10000

recursive calls. Stack explodes

* Tail recursion mitigates this but using tail recursion can

often require inelegant code gymnastics.

public static int tail_mult(int n1, int n2,
if (n2 == 0)
return total;
return tail_mult(n1, n2-1, total+nl);

}

© Alex Ufkes, 2020, 2022

int total) {

71

Functional Programming: Disadvantages

Recursion can cause memory use to explode:

Operating on a list with 10000 items requires 10000
recursive calls. Stack explodes

e Tail recursion mitigates this as we saw, but using tail

recursion can often require inelegant code gymnastics.

No assignment statements, data is immutable:

© Alex Ufkes, 2020, 2022

Performing actions requires allocating new memory.
Remember strings in Java — Changing the value of a
string creates a new string object with the new value.
Garbage collection very important!

72

@ LISP - 1957 - first-class functions Only predated by FORTRAN

@ APL - 1962 - no globals

@ ML - 1973 - Hindley-Milner type inference

@ Hope™! - early 1970s - call-by-pattern, algebraic data types
@ Miranda™® - 1985 - proprietary

@ Haskell* - 1990

© Alex Ufkes, 2026;-2622

73

© Alex Ufkes, 2020, 2022

elixir

74

ERLANG

© Alex Ufkes, 2020, 2022

History: Erlang

Proprietary language used at Ericsson,
developed by Joe Armstrong
Initially implemented in Prolog at Ericsson
By 1988, it had been proven suitable for
prototyping telephone exchanges but...
Prolog interpreter was much too slow,
needed to be 40x faster.
In 1992 work began on BEAM VM

o Compiles Erlangto C

o Balance performance and disk space.
Went from lab to real applications by 1995
In 1998, Ericsson banned internal use of
Erlang, causing Armstrong to quit.

o Rehired in 2004, after ban was lifted.

75

elixir

© Alex Ufkes, 2020, 2022

History: Elixir

* Builds on Erlang, runs on BEAM VM

* Erlang was prolog-like, Elixir is more
conventional.

* First appeared in 2011

 Developed by Jose Valim as an R&D
project at Plataformatec (consulting firm)

* Used at Pinterest, and for web
development by Discord.

® L

76

Elixir: Overview

© Alex Ufkes, 2020, 2022

Elixir is a functional programming language

o Mostly immutable, rich support for concurrency
Everything is an expression.

o Everything evaluates to something.
Elixir compiles into Erlang bytecode.

o Thus, Erlang functions can be called from Elixir
Emphasizes recursion and higher-order functions

o As opposed to side-effect-based looping

77

Elixir: Processes

© Alex Ufkes, 2020, 2022

Elixir code runs inside lightweight threads of execution.

o lIsolated, exchange information via message passing.

Not uncommon to have hundreds of thousands of
processes running concurrently in same VM.
o Note: These are NOT operating system processes!
o Extremely lightweight in terms of CPU and memory
o A process need not be an expensive resource

78

Installing Elixir

https://elixir-lang.org/

l INSTALL GUIDES LEARNING DOCS DEVELOPMENT BLOG PACKAGES
ll]

Elixir is a dynamic, functional language designed for building News: Elixir v1.6 released

scalable and maintainable applications.

2 ; Search...
f inspect(), do: Elixir leverages the Erlang VM, known for running low-latency,

f 1nspect(
f 1nspect(

def inspect(: "), successfully used in web development and the embedded software Elixirconf‘

distributed and fault-tolerant systems, while also being

f inspect{otom) do dﬂ]nain.
inspect{atom ElixirConf™ US is being held in

Bellevue, WA, September 4-7, 2018.

our learningﬁ_a%e for other resources. Or keep reading to get an overview of the platform, ElixirConf EU is being held in
too

© Alex Yfkes, 2020, 2022 Warsaw, Poland, April 16-18, 2018. 79

To learn more about Elixir, check our getting started guide and

‘ elixir

Installing Elixir

1 Distributions

11 Mac OS5 X

1.2 Unix (and Unix-like)
1.3 Windows

1.4 Raspberry Pi

1.5 Docker

1.6 Nanobox

2 Precompiled package

3 Compiling with version managers

4 Compiling from source (Unix and MinGW)

5 Installing Erlang

6 Setting PATH environment variable

7 Checking the installed version of Elixir

© Alex Ufkes, 2020, 2022

INSTALL

GUIDES LEAENING DOC

Windows

« Web installer

« Download the installer

« Click next, next, ..., finish

Mac0OS X

+ Homebrew
« Update your homebrew to latest: brew update
= Bun: brew install elixir

= Macports

« Run: sudo port install elixir

80

Erlang Shell

Better than just a terminal window

File Edit Opticns View Help

ErTang/0TP 20 [erts-9.2] [64-bit] [smp:8:8] [ds:8:8:10] [

Interactive Elixir (1.6.5) - press Ctrl+C to exit (type h
iex(1)>

— O >

Font b
Font: Fort style:

| ucida Console Regular oK
T S —
Fixedsys obligue

Lucida Console Bold

Lucida Sans Type | |Bold 0blig
Terninal W W

Effects Sample

[Strikeout b

[] Underdine AaB Y}I'ZZ

Colar:

| Black v| Seipt:

|Westem

© Alex Yfkes, 2020, 2022

81

Writing and Compiling Elixir

Play around in the interactive shell or do things from the command line.

IDEs exist, but you’re on your own. | won’t help troubleshoot IDE-related problems.

| Erlang — | ol
File Edit Opticns View Help

. BR2B AT
Erlang/OTP 20 [erts-9.2] [64-b1t] [smp:8:8] [ds:8:8:10] [async-threads:10] A

Interactive Elixir (1.6.5) press Ctrl+C to exit (type h() ENTER for help)

This is the Erlang shell. We can:
* Type code into here line by line

* Copy and paste code into here large chunks at a time
 Define modules and functions — though it’s tedious.

© Alex Ufkes, 2020, 2022

@ CCPS506_Elixir - Replit X +

g C 0 & replit.com/@

— f.:l} o ccPss06_Elar [

F“ES R - Main.exs Console

1 I0.puts "Hello, world! e e
B mainexs : Hello, world!

[

replit

Elixir References

https://media.pragprog.com/titles/elixir/ElixirCheat.pdf
https://elixir-lang.org/getting-started/introduction.html

https://hexdocs.pm/elixir/master/api-reference.htmlfticontent

© Alex Ufkes, 2020, 2022

84

Summary

© Alex Ufkes, 2020, 2022

Double dispatch
Smalltalk conclusion
Functional paradigm
Getting started with Elixir

85

© Alex Ufkes, 2020, 2022

86

