
CPS506 Comparative Programming Languages
Functional Programming

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason

Why FP?

simpler model
no state to reason about
easier for proofs
very expressive
leverage multi-core

When FP?

LISP - 1957 - first-class functions
APL - 1962 - no globals
ML - 1973 - Hindley-Milner type inference
Hope*! - early 1970s - call-by-pattern, algebraic data types
Miranda* - 1985 - proprietary
Haskell* - 1990

Who FP?

LISP/Scheme - John McCarthy / Guy Steele
APL/FP - Ken Iverson / John Backus
ML - Robin Milner / Dave MacQueen / Robert Harper
Haskell - Simon Peyton Jones / Paul Hudak / Phillip Wadler

https://creativecommons.org/licenses/by-nc-sa/4.0/


How FP?

λ-calculus
first-class functions
garbage collection
literal constructors
tail-recursion
closures

What FP?

return values vs. modify state
functions as values
list comprehensions
limited/no mutability (FRP)

Where FP?

lots of companies where thinking more important than coding
...’tho that can be taken too far

all of the languages we’re discussing used in some large
companies
Paul Graham of Y-combinator fame made his money using LISP
as competitive advantage

Assignment versus Binding

non-mutation
binding
matching
scope

http://en.wikipedia.org/wiki/Lambda_calculus
http://www.infoq.com/presentations/elm-reactive-programming
http://www.paulgraham.com


Simple Functions

simple functions: fn x -> x + 1 end

function composition
function piping

First-Class Functions

map
filter

Closures

first-class functions retain bindings
static scope
pure-functional makes this easy


