CPS506 Comparative Programming Languages

Functional Programming

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason @

RYERSON
UNIVERSITY



https://creativecommons.org/licenses/by-nc-sa/4.0/

@ simpler model

@ no state to reason about
@ easier for proofs

@ very expressive

@ leverage multi-core



When FP?

@ LISP - 1957 - first-class functions

@ APL - 1962 - no globals

@ ML - 1973 - Hindley-Milner type inference

@ Hope™! - early 1970s - call-by-pattern, algebraic data types
@ Miranda* - 1985 - proprietary

@ Haskell* - 1990



Who FP?

@ LISP/Scheme - John McCarthy / Guy Steele

@ APL/FP - Ken Iverson / John Backus

@ ML - Robin Milner / Dave MacQueen / Robert Harper

@ Haskell - Simon Peyton Jones / Paul Hudak / Phillip Wadler



@ JA-calculus

@ first-class functions
@ garbage collection
@ literal constructors
@ tail-recursion

@ closures


http://en.wikipedia.org/wiki/Lambda_calculus

@ return values vs. modify state
@ functions as values

@ list comprehensions

@ limited/no mutability (FRP)


http://www.infoq.com/presentations/elm-reactive-programming

Where FP?

@ lots of companies where thinking more important than coding
@ ...'tho that can be taken too far

T sAD—
0’“"’1; Aoy T Know! TM DEVELOPING
- \a SYSTEM T PRSS YOU
ARBITRARY CONDIMENTS.
J iTS BEEN 20 )

MINUTES!
O J ITLL SAVE TIME
RU IN THE LONG RUN!

@ all of the languages we're discussing used in some large
companies

@ Paul Graham of Y-combinator fame made his money using LISP
as competitive advantage


http://www.paulgraham.com

@ non-mutation
@ binding

@ matching

@ scope



@ simple functions: fn x -> x + 1 end
@ function composition
@ function piping



@ map
o filter



@ first-class functions retain bindings
@ static scope
@ pure-functional makes this easy



