
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 2: Control flow & collections in Smalltalk

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

• Labs #1 & #2 posted
• Assignment description posted
• See D2L or outline for due dates

3

Course Administration (CCPS)

© Alex Ufkes, 2020, 2022

4

Let’s Get Started!

© Alex Ufkes, 2020, 2022

Smalltalk: OOP cranked up to 11

5© Alex Ufkes, 2020, 2022

Everything is an object. Everything is an instance of a corresponding class

A Smalltalk object can do exactly three things:
1. Hold state (assignment)
2. Receive a message (from itself or another object)
3. Send message (to itself or another object)

Message passing is central in Smalltalk.

Objects in Smalltalk

6© Alex Ufkes, 2020, 2022

Unary Messages:
sqrt, squared

asInteger
class, cr

floor, ceiling
sin, cos, tan

Any message without
argument(s)

Binary Messages:
+, -, *, /

//, \\
=, ==,

<, <=, >, >=

Arithmetic,
comparison, etc.

Keyword Messages:
raisedTo:

bitAnd:, bitOr:
show:

ifTrue:ifFalse:

Message with one or
more arguments,
ending in colon:

http://squeak.org/documentation/terse_guide/

Message Summary

7© Alex Ufkes, 2020, 2022

Summary: Literals

8© Alex Ufkes, 2020, 2022

3 factorial + 4 factorial between: 10 and: 100

Which messages are unary? Binary? Keywords?

1. factorial gets sent
to 3, then 4.

6 + 24 between: 10 and: 100

2. + is sent to 6 with
24 as argument

30 between: 10 and: 100

3. between:and: sent to 30 with
10 and 100 as arguments

30 between: 10 and: 100

true

Example: What is the Result?

9© Alex Ufkes, 2020, 2022

10

Continuing on…

© Alex Ufkes, 2020, 2022

Continuing study of Smalltalk:
• Blocks, control flow
• Some Smalltalk collections

11

Today

© Alex Ufkes, 2020, 2022

Blocks

12© Alex Ufkes, 2020, 2022

Defined with square brackets []

Within the [] is Smalltalk code.

[Transcript show: 27; cr].

This block contains familiar code – we show the
Integer 27 and do a carriage return.

Blocks

13© Alex Ufkes, 2020, 2022

Blocks

To execute a block, pass it
the “value” message

14© Alex Ufkes, 2020, 2022

Highlight line, ctrl-p to print it

Blocks are Objects!

15© Alex Ufkes, 2020, 2022

Blocks

Blocks are objects! They may
be assigned to a variable:

Now we can execute the
block using the variable

• We are passing the value
message to a block object.

• BlockClosure has a
method called value.

16© Alex Ufkes, 2020, 2022

Blocks as Anonymous Functions

func := [:x | Transcript show: x; cr.].

Argument(s) can be passed in when we send the keyword value: message
(as opposed to the unary value message)

• This is a parameter. Pharo allows up to four.
• Think about why this limit of four might exist

in practice.

func value: 27.

17© Alex Ufkes, 2020, 2022

Blocks with Arguments

18© Alex Ufkes, 2020, 2022

Blocks with Multiple Arguments

• One arg? Keyword message value:
• Two args? Keyword message value:value:
• Recall how Smalltalk interleaves arguments

19© Alex Ufkes, 2020, 2022

value:value:value:value:value:value:value….

What can we do if we want to pass more than 4 arguments?
• Pass a single array (or some other collection) of values
• Same tricks you’d use in any other high-level language

20© Alex Ufkes, 2020, 2022

Reminder: Terminator VS Separator

func := [:x | Transcript show: x; cr.].

func := [:x | Transcript show: x; cr].

These both work. What’s the difference, if any?

21© Alex Ufkes, 2020, 2022

Reminder: Terminator VS Separator

In Java, semi-colon (;) is the statement terminator.
In Smalltalk, period (.) is the statement separator.

• Thus, we do not need a period after the last statement
we’re executing.

• This applies to blocks as well. Period not required after
the last statement in a block

• Of course, it’s not illegal to have it there, just redundant

22© Alex Ufkes, 2020, 2022

23

Blocks: Multiple Statements

© Alex Ufkes, 2020, 2022

Nice blocks, what can you build with them?

24© Alex Ufkes, 2020, 2022

Control Structures

Boolean Expressions

25© Alex Ufkes, 2020, 2022

In Java we have syntax (reserved words) for selection:

if (x > y)
System.out.println(“True”);

else
System.out.println(“False”);

Control Structures: Branching/Selection

Control structures in Smalltalk do not have special syntax.

They are realized using blocks and message passing!

26© Alex Ufkes, 2020, 2022

They are realized using blocks and message passing!

7 > 4 ifTrue: [Transcript show: ‘This is true’].

1) 7 > 4 evaluated first (why?), results in Boolean object

2) ifTrue: message sent to Boolean object with BlockClosure
argument [Transcript show: ‘This is true’].
• Suggests that a Boolean object (true, false) knows how

to handle the ifTrue: message.
• Who can guess what the ifTrue: method is going to do

with its argument?

Control Structures: Branching/Selection

27© Alex Ufkes, 2020, 2022

7 > 4 ifTrue: [Transcript show: ‘This is true’].

28© Alex Ufkes, 2020, 2022

ifTrue: must be very complicated…

• A true object receives ifTrue: message.
• It sends the value message to the argument.
• The value message executes a block.
• It really is that simple! 29© Alex Ufkes, 2020, 2022

ifTrue: must be very complicated…

• We can see the ifTrue: method is returning
the result of executing the block argument.

• Executing the code within a block is not the
same as returning something!

• What is the result when we execute a block?
30© Alex Ufkes, 2020, 2022

Evaluating Blocks

• A block evaluates to the result of its last expression.
• In this case, we have a single string literal, nothing else.
• A literal, when evaluated, is simply itself.

31© Alex Ufkes, 2020, 2022

Evaluating Blocks

• Must evaluate to something.
• If there’s no expression, the

block evaluates to nil
• nil is an object! Not a

reserved keyword.

32© Alex Ufkes, 2020, 2022

nil

Turns out…
• If we send ifTrue: to a False object, we also get nil.
• nil is an instance of the UndefinedObject class.
• Unassigned variables also reference the nil object.

33© Alex Ufkes, 2020, 2022

nil

34© Alex Ufkes, 2020, 2022

ifTrue:ifFalse:

• By now, we know this is a keyword message that takes
two arguments. Both are blocks.

• The block that gets executed depends on whether the
message is sent to a true object or a false object.

35© Alex Ufkes, 2020, 2022

ifTrue:ifFalse:

36© Alex Ufkes, 2020, 2022

ifTrue:ifFalse:

37© Alex Ufkes, 2020, 2022

ifTrue:ifFalse:

38© Alex Ufkes, 2020, 2022

We can arrange the code to make the structure look more familiar:

• Just like in Java, this control “structure”
operates on a Boolean condition.

• It doesn’t matter what that condition
is, so long as it evaluates to True or
False (Boolean object)

39© Alex Ufkes, 2020, 2022

If temp <= 0, execute this block

If not, execute this block

40© Alex Ufkes, 2020, 2022

We can write this a slightly different way – the entire
structure can be an input argument to show:

Now, instead of including Transcript show:
statements in the blocks, we can just use the blocks

to pick a string literal object to be shown.

41© Alex Ufkes, 2020, 2022

Different Syntax, Same Semantics

42© Alex Ufkes, 2020, 2022

Different Syntax, Same Semantics

This is great practice – rearrange code to be as
small/efficient as possible. It will help you truly

understand how the syntax works.

43© Alex Ufkes, 2020, 2022

temp <= 0 ifTrue: ['Solid'] ifFalse: [temp >= 100 ifTrue:
['Gas'] ifFalse: ['Liquid']].

This goes first!

temp := 88.

false ifTrue: ['Solid'] ifFalse: [temp >= 100 ifTrue: ['Gas’]
ifFalse: ['Liquid']].

Passed to false object

temp >= 100 ifTrue: ['Gas’] ifFalse: ['Liquid']

Does not evaluate yet!

false ifTrue: ['Gas’] ifFalse: ['Liquid']

Passed to false object

This goes first!

44© Alex Ufkes, 2020, 2022

false ifTrue: ['Gas'] ifFalse: ['Liquid'].

Passed to false object

'Liquid'

Finally, when all the message passes have been
evaluated, we’re left with 'Liquid'

45© Alex Ufkes, 2020, 2022

46
Condition

© Alex Ufkes, 2020, 2022

Repetition Using Messages & Blocks

What messages are sent to what objects?
• whileTrue: message sent to block object

with another block as an argument

47© Alex Ufkes, 2020, 2022

[x > 0] whileTrue: [x := x - 1. y := y + 2.].

whileTrue: message sent to block containing Boolean expression x > 0

The argument that accompanies the whileTrue: message is a
block containing the code to be repeated.

The BlockClosure class understands the whileTrue: message.

Repetition Using Messages & Blocks

48© Alex Ufkes, 2020, 2022

Recursive!
49© Alex Ufkes, 2020, 2022

• Send value message to
self, which executes it

• self evaluates to a Bool

self value ifTrue: [aBlock value. self whileTrue: aBlock]

• Send ifTrue: message to Boolean
• Argument is a Block object

• aBlock is the input argument first
passed with the whileTrue: message

• We execute it once

Finally, send whileTrue:
once more to the same block,

with the same argument.

50© Alex Ufkes, 2020, 2022

Repetition Using Messages & Blocks

Much like selection, there
are many options

51© Alex Ufkes, 2020, 2022

timesRepeat:

• timesRepeat: is passed to a regular old integer
• Argument is a block object (loop body)

52© Alex Ufkes, 2020, 2022

53

timesRepeat: is just a
wrapper for whileTrue:

© Alex Ufkes, 2020, 2022

54© Alex Ufkes, 2020, 2022

• a is our loop index
• Can be used in the

“body” of the loop
• I.e., the block

For-loop equivalent - to:do:

• to:do: message passed to an
Integer object

• Two arguments – ending index
and block representing loop body.

55© Alex Ufkes, 2020, 2022

• Same as timesRepeat:, just a
wrapper for whileTrue:

• Why is this implemented under
Number, and not Integer?

56© Alex Ufkes, 2020, 2022

57

For-loop equivalent - to:do:

Why is this implemented under Number, and not Integer?

In the case of timesReapeat:
• We cannot execute a block 4.7 times.
• This makes no sense.

x to: y do: […]
• Will count from x to y by 1.
• We can count from 2.1 to 4.7.
• 2.1, 3.1, 4.1, 5.1

© Alex Ufkes, 2020, 2022

• e will take the value of each
element in the array nums.

• Written this way, the loop will
automatically go through each
element in nums.

• Don’t need to keep track of index
or conditions, it’s done for us.

Iterate Over Arrays

• In Java we have a different version of for loop for
safely iterating over arrays.

• Prevents us from accidentally going out of bounds.

© Alex Ufkes, 2020, 2022 58

Iterate Over Arrays

• Send do: message to an array object
with block as argument.

• Block argument is each array element
• Also works with other collections
• Speaking of collections…

59© Alex Ufkes, 2020, 2022

Smalltalk
Collections

60© Alex Ufkes, 2020, 2022

We’ve seen arrays.

In Java, we have things like ArrayLists, Vectors,
LinkedLists, PriorityQueues, and so on.

What about Smalltalk?

61© Alex Ufkes, 2020, 2022

62

A selection:

© Alex Ufkes, 2020, 2022

• Can initialize as empty
• Or with some initial elements
• Can be heterogeneous!
• Transcript can print them

Ordered Collection

63© Alex Ufkes, 2020, 2022

with:with:with:with:with:with:with:with:with:…

64© Alex Ufkes, 2020, 2022

• Send message add: to an
OrderedCollection object.

• Argument is the object to append.
• Here we cascade several adds.

Ordered Collection: Add Elements

65© Alex Ufkes, 2020, 2022

• Notice we can add a whole array!
• Arrays are objects, just like integers.

Ordered Collection: Add Elements

66© Alex Ufkes, 2020, 2022

Notice! addAll: adds the elements
of an array, not the array itself.

Ordered Collection: at:put:, addAll:

67© Alex Ufkes, 2020, 2022

Ordered Collection: Removing

68© Alex Ufkes, 2020, 2022

• Remove values. Not indexes!
• Runtime error if value doesn’t exist

Ordered Collection: Removing

69© Alex Ufkes, 2020, 2022

Ordered Collection: Removing

70© Alex Ufkes, 2020, 2022

71

Remove by Index

Can use removeAt:

• Remember Smalltalk is one-indexed
• Mutates the original!

© Alex Ufkes, 2020, 2022

72

With Arrays?

No! Arrays cannot change size once created:

© Alex Ufkes, 2020, 2022

Ordered Collection: select:

• Filter collection based on some criteria.
• Result is a collection containing elements

that pass condition.

73© Alex Ufkes, 2020, 2022

• Filter collection based on some criteria.
• Remove elements that pass the condition.

Ordered Collection: reject:

74© Alex Ufkes, 2020, 2022

• Transform each element in collection.
• i.e. perform some operation on each element.

Ordered Collection: collect:

75© Alex Ufkes, 2020, 2022

Nope.

Are we mutating the original?

76© Alex Ufkes, 2020, 2022

And More!

77© Alex Ufkes, 2020, 2022

Similar to an OrderedCollection, but, you know, sorted.

Operations are all very similar to OrderedCollection, but
here we can specify a sorting criteria:

[:a :c | a <= c]

• A block with two inputs, that implement a Boolean condition.

Sorted Collection

78© Alex Ufkes, 2020, 2022

• Default sorting behavior is ascending order
o [:a :b | a <= b]

• We can change that to descending order
• Condition can be anything that results in a Boolean
• Operations on a SortedCollection trigger re-sorting.

Sorted Collection

79© Alex Ufkes, 2020, 2022

• Default sorting behavior is ascending order
o [:a :c | a <= c]

• This is a block that evaluates to Boolean when executed
• We’re defining the condition for a appearing before c in the sequence
• Ascending order: a comes before c if a is less than or equal to c
• If block is true, a comes first.

This is just like implementing a compareTo() method in Java

Sorted Collection

80© Alex Ufkes, 2020, 2022

Silly sorting criteria?

[:a :b | a \\ 2 = 0]

Sorted Collection

a comes before c if a is even

81© Alex Ufkes, 2020, 2022

Modifying collection triggers re-sorting

82© Alex Ufkes, 2020, 2022

83

Collections: Sets

• Sets cannot contain any duplicate elements
• By this, we mean duplicate values.
• Added 3, four times. Only one in the set.
• Size is still 1.

© Alex Ufkes, 2020, 2022

84

Collections: Sets

• Different ByteString objects
• Same value.

© Alex Ufkes, 2020, 2022

85

Collections: Sets

• We can convert back and forth
between collection types.

• asSet, asSortedCollection, etc
• asInteger, asArray, lots of

coercion messages.

© Alex Ufkes, 2020, 2022

86

Collections: Sets

© Alex Ufkes, 2020, 2022

87

Remove by Index?

No! Sets do not have order. They cannot be accessed by index:

© Alex Ufkes, 2020, 2022

• Arrays are indexed with integers; Dictionaries
are indexed with any object at all.

• You’ll know exactly how this works if you
learned Python in C/CPS 109

• Store key/value pairs, key can be anything.
• Very powerful, but we give up ordering (hash

table implementation)

Dictionary

88© Alex Ufkes, 2020, 2022

• Add data to dictionary using at:put: message
• Notice, keys/values can be any object.
• ByteString object as key, SmallInteger object as key.

Dictionary: Adding Entries

89© Alex Ufkes, 2020, 2022

Access entries using at: message

Dictionary: Getting Value with Key

90© Alex Ufkes, 2020, 2022

Dictionary: Key not Found?

91© Alex Ufkes, 2020, 2022

Not very graceful…

Try at:ifAbsent: instead

• Block argument gets executed
if entry isn’t found

• Block does nothing, nil gets
passed as argument to show:

• No more run time error.

92© Alex Ufkes, 2020, 2022

Dictionary: Printing

93© Alex Ufkes, 2020, 2022

• When searching for a key in a regular dictionary, the result of
the = and hash messages are used.

• I.e., hash to index into table, compare key to resolve collision
o Remember hash tables from C/CPS 305

• An Identity Dictionary uses == message, which checks if the
key is the same object

• Other than that, methods are the same
• Identity dictionary works great with symbols, less so with

strings. Why?
o Identical strings are not necessarily the same object!

Identity Dictionary

94© Alex Ufkes, 2020, 2022

Symbols:
• # followed by string literal

o #‘aSymbol’ same as #aSymbol (no whitespace, quotes implied)
o #‘symbol one’ #‘symbol two’

• Symbols are globally unique. Strings are not.

Meaning:
• Two identical (value) strings can exist as two different objects
• For every unique symbol value, there can be only one object.

Symbol Reminder

95© Alex Ufkes, 2020, 2022

• Symbol concatenation returns a string
• Pass the asSymbol message to a string

to convert it to a symbol.

Same value, same object!

96© Alex Ufkes, 2020, 2022

Same key value,
different object

Identity Dictionary

97© Alex Ufkes, 2020, 2022

With Symbols?

98© Alex Ufkes, 2020, 2022

99© Alex Ufkes, 2020, 2022

There are many other
classes for you to explore:

100© Alex Ufkes, 2020, 2022

101

Topic 3: Summary

Continuing study of Smalltalk:
• More advanced syntax/semantics:

o Blocks
o Control “Structures”
o Several Smalltalk collections

© Alex Ufkes, 2020, 2022

102© Alex Ufkes, 2020, 2022

