
CPS506 - Comparative Programming Languages
Smalltalk

Dr. Dave Mason
Department of Computer Science
Ryerson University

©2022 Dave Mason

Smalltalk

In this section we will:
Look at Smalltalk history
Explore Smalltalk Syntax and Pharo

History

Alan Kay at Xerox PARC, with Adele Goldberg and Dan Ingalls,
along with Ted Kaehler, Larry Tesler
wanted to build Dynabook
Sketchpad, LOGO, Lisp, Simula
Smalltalk-71
Smalltalk-72 on the ALTO
Smalltalk-76
Smalltalk-80 - standard to today
extensions, but forward compatible

Overview

the prototypical class-based object-oriented language
minimal - no reserved words
control structures as methods
typically high-performance byte-code interpreter

https://creativecommons.org/licenses/by-nc-sa/4.0/

Paradigm

pure Object-Oriented
class based
simple, metacircular, reflective

Syntax

exampleWithNumber: x
| y |
true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.
#($a #a ’a’ "a" 1 1.0)

do: [:each |
Transcript show: each class name;

show: ’ ’].
^x < y

Syntax Rules
1 literals

numbers: -17
3.141592
2r101
16r2c4f
characters: $a
$(
strings: ’this isn’’t "hard"!’
symbols: #asymbol #’a symbol’
#aSymbol:
arrays:
#(abc nil #nil 3 ** ’string’ (a subarray) $!)
blocks: [3] [: arg | arg-4]

2 variables
upper/lower case, digits; case sensitive; camel-case
arguments to methods and blocks
temporaries | a b | at beginning of methods and blocks
instance variables
global variables - includes class names

No reserved words; only self super nil true false
predefined

3 messages
unary: 3 negated
x abs
binary: x*4
y@%%!&x
(no precedence, left to right, parentheses, 3+4*5 = 35)
keyword: x with: y and: 3
x with: y*3 negated and: 3

unary & keywords same pattern as variables
4 cascade

x nextPut: $@; cr; nextPutAll: ’xxx’
5 assignment

x := y := 3
6 return

return value from method: ^ x
even from within block passed to method: x ifNil: [^42]

7 array constructor
{3. 4.56. x negated. ’xxx’}
equivalent to
Array with: 3 with: 4.56 with: x negated with: ’xxx’

8 comment
" not eval’ed "

9 statement separator
x := 3. y:=x*5

Semantics

everything is an object
only 3 operations

assignment
message send
return result

class-based method tables
intrinsic rich meta-environment

Pharo

Squeak version of Smalltalk built from scratch at Apple, Walt
Disney Imagineering by Dan Ingalls and Alan Kay
built to explore Dynabook ideas
2 significant forks:

Pharo for “business”
Cuis for teaching

Currently Pharo 10 pharo.org

Class Structure

nil

Behavior classBehavior

Class classClass

Metaclass classMetaclass

ProtoObject classProtoObject

Object classObject

Magnitude classMagnitude

Number classNumber

Integer classInteger

SmallInteger classSmallInteger1

1 1 class 1 class superclass 1 class superclass superclass superclass

superclass superclass superclass 1 class class 1 class class superclass

= 1 class superclass class 1 class class superclass superclass

superclass superclass superclass 1 class class superclass superclass superclass

superclass superclass superclass 1 class class class 1 class class

class class whole structure

Method Dispatch

Message classMessage

nil

ProtoObject

debug windowObject

Magnitude

Number

Integer

SmallInteger42
oddmax: 5yourselffubarArray

new

doesNotUnderstand:

open

42 42 odd 42 max: 5 42 yourself 42 fubar 42 Array (after defining a

DNU for SmallInteger)

Method Dispatch...

many special cases
“ implementing a language like Smalltalk efficiently requires the
implementor to cheat... but that’s okay as long as you don’t get
caught” - Peter Deutsch (creater of JITs and many other language
optimizations
ifTrue:ifFalse: do: whileTrue:, etc.
primitives
hashed dispatch

https://pharo.org

Types

hardware level - instructions act on register of bits
statically typed

types determined and instructions chosen at compile time
variables and expressions have types
less flexible, sometimes much less
safety variable

dynamically typed
types determined and instructions chosen at run time
values have types
safety assured

Type determination

values tagged - size of a register
fallback is to heap-allocated object
simplest tagging is just differentiating SmallInteger

description for AST Smalltalk - alternate dispatch
documentation for GNU Smalltalk
code for OpenSmalltalk

Pragmatics

garbage-collected
usually image-based development
best-in-class IDE
optimized VM (JIT)

Environment and IDE

1 image-based
2 IDE that others aspire to
3 class browser, playground, debugger, inspector, senders,

receivers, refactoring, transcript, unit-test runner, code critic,
method versions, interruptable

4 even if crashes, changes recoverable

https://github.com/dvmason/AST-Smalltalk/blob/main/Documentation/Mapping.md
https://www.gnu.org/software/smalltalk//manual/html_node/Smalltalk-types.html
https://github.com/OpenSmalltalk/opensmalltalk-vm/blob/Cog/specs/lowcode.xml

Evaluation

Simplicity
Size of the grammar
complexity of navigating modules/classes

Orthogonality
number of special syntax forms
number of special datatypes

Extensibility
functional
syntactically
defining literals
overloading

	Smalltalk

