CPS506 - Comparative Programming Languages
Smalltalk

Dr. Dave Mason
Department of Computer Science
Ryerson University

=
©2022 Dave Mason Ky

RYERSON
UNIVERSITY

In this section we will:
@ Look at Smalltalk history
@ Explore Smalltalk Syntax and Pharo

https://creativecommons.org/licenses/by-nc-sa/4.0/

History

@ Alan Kay at Xerox PARC, with Adele Goldberg and Dan Ingalls,
along with Ted Kaehler, Larry Tesler

@ wanted to build Dynabook

@ Sketchpad, LOGO, Lisp, Simula

@ Smalltalk-71

@ Smalltalk-72 on the ALTO

@ Smalltalk-76

@ Smalltalk-80 - standard to today

@ extensions, but forward compatible

Overview

@ the prototypical class-based object-oriented language
@ minimal - no reserved words

@ control structures as methods

@ typically high-performance byte-code interpreter

@ pure Object-Oriented
@ class based
@ simple, metacircular, reflective

exampleWithNumber: x

vy |

true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.

#(Sa #a "a’” "a" 1 1.0)

do: [:each |
Transcript show: each class name;
show: 7 "].

Syntax Rules
@ literals

numbers: -17

3.141592

2r101

l6r2c4df

characters: Sa

$ (

strings: “this isn’’t "hard"!’
symbols: #asymbol #’a symbol’
#aSymbol:

e arrays:
#(abc nil #nil 3 *x ’'string’
@ blocks: [3 1 [: arg | arg-4]
@ variables

(a subarray)

upper/lower case, digits; case sensitive; camel-case

arguments to methods and blocks

temporaries | a b | at beginning of methods and blocks

instance variables
global variables - includes class names

No reserved words; only self super nil true false
predefined

A meccanec

Semantics

@ everything is an object
@ only 3 operations

@ assignment
@ message send
e return result

@ class-based method tables
@ intrinsic rich meta-environment

$!

)

Pharo

@ Squeak version of Smalltalk built from scratch at Apple, Walt

Disney Imagineering by Dan Ingalls and Alan Kay

@ built to explore Dynabook ideas
@ 2 significant forks:

e Pharo for “business”
e Cuis for teaching

@ Currently Pharo 10 pharo.org

Class Structure

Behavior |- - ©> Behavior class |
“ Class == Class class |

/\

|ProtoObject |— —|>| ProtoObject class |

AN
AN
AN

| Object - - —|>| Object class
N N N N .
| Magnitude |— - —|>| Magnitude class | o \\ N
7 N
| Number |— - —l>| Number class | S
| Integer |— - —|>| Integer class] -7 i

@ - ~l>| Smallinteger |— = —|>| Smallinteger c/Iass |

1 1 class 1 class superclass 1 class superclass supercl

ass superclass

superclass superclass superclass 1 class class 1 class class superclass

= 1 class superclass class 1 class class superclass superclass

superclass superclass superclass 1 class class superclass superclass superclass

https://pharo.org

ProtoObject

{_ debug window)

new

| [Message) |

42 42 odd 42 max: 5 42 yourself 42 fubar 42 Array (after defining a

DNU for SmallInteger)

@ many special cases

@ “implementing a language like Smalltalk efficiently requires the
implementor to cheat... but that's okay as long as you don’t get
caught” - Peter Deutsch (creater of JITs and many other language
optimizations

@ ifTrue:ifFalse: do: whileTrue:, efc.

@ primitives

@ hashed dispatch

Types

@ hardware level - instructions act on register of bits

@ statically typed

e types determined and instructions chosen at compile time
e variables and expressions have types

o less flexible, sometimes much less

e safety variable

@ dynamically typed

e types determined and instructions chosen at run time
e values have types
e safety assured

Type determination

@ values tagged - size of a register

@ fallback is to heap-allocated object

@ simplest tagging is just differentiating SmallInteger
@ description for AST Smalltalk - alternate dispatch

@ documentation for GNU Smalltalk

@ code for OpenSmalltalk

https://github.com/dvmason/AST-Smalltalk/blob/main/Documentation/Mapping.md
https://www.gnu.org/software/smalltalk//manual/html_node/Smalltalk-types.html
https://github.com/OpenSmalltalk/opensmalltalk-vm/blob/Cog/specs/lowcode.xml

@ garbage-collected

@ usually image-based development
@ best-in-class IDE

@ optimized VM (JIT)

@ image-based
@ IDE that others aspire to

© class browser, playground, debugger, inspector, senders,
receivers, refactoring, transcript, unit-test runner, code critic,
method versions, interruptable

© even if crashes, changes recoverable

@ Simplicity

e Size of the grammar

e complexity of navigating modules/classes
@ Orthogonality

e number of special syntax forms

e number of special datatypes
@ Extensibility

e functional

e syntactically

e defining literals
e overloading

	Smalltalk

