C/CPS 506

Comparative Programming Languages
Prof. Alex Ufkes

ic1: i i i Ryerson
Topic 1: Imperative paradigm, Smalltalk basics

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit

permission of Alex Ufkes.

© Alex Ufkes, 2020, 2022

Instructor

Alex Ufkes
aufkes@ryerson.ca

Lecture time (CCPS):
Saturday: 9:00am-12:00pm
Lab time (CCPS):

Saturday: 12:00-1:00pm

When Contacting...

 E-mail — I check it often (aufkes@ryerson.ca)

 Please DO NOT email me at aufkes@scs.ryerson.ca
o | don’t check this one at all.

* Please put CCPS506 in the subject line

* Include your full name, use your Ryerson account

© Alex Ufkes, 2020, 2022

Course Administration

11} O rarty CCPS506 - Comparative Programming La...

Content Grades Assessment w

© Alex Ufkes, 2020, 2022

ooo
ooo
ooo

= @ O

Communication v Resources » Classlist Course Admin

Announcements related to this course will be made
on D2L. Be sure to check regularly!

Grades, assignments, and labs will be posted to D2L.

The course outline can also be found there.

gz Alexander Ufkes {{g}}

Course Synopsis

e Study fundamental concepts in the design of programming languages.
* Explore through four languages: Smalltalk, Elixir, Haskell, and Rust.

» ®

Each of these differs in a number of significant language characteristics:
Type systems: static VS dynamic, strong VS weak typing
Paradigm: object oriented, functional, and imperative

Syntax and semantics: scoping rules, data types, control structures,
subprograms, encapsulation, concurrency, and exception handling.

THE LAY

elixir

Adele Goldberg and David Robson

© Alex Ufkes, 2020, 2022

Course Text

THE LAI

[] []
Adele Goldberg and David Robson e l I X I r

& -

© Alex Ufkes, 2020, 2022

No official text for this course.
Save your money!

Lecture slides will be posted
every week.

Online resources for each
language will also be provided.

Evaluation (CCPS)

Labs: 20% Two labs per language, 2.5% each
Projects: 40% One per language, complete 2 of 4
Final Exam: 40% Released after final lecture

All evaluation details and deadlines can be
found in the course outline.

Regarding Deadlines

From the outline:

Late Submissions
Late submissions will be penalized at a rate of 3" %, where n is the

number of days late. One day late is a 3% penalty, two days 9%, three
days 27%, four days 81%. Five days or later receives zero.

* The penalty for a couple days late is small, but it ramps up quickly.

© Alex Ufkes, 2020, 2022

Questions So Far?

© Alex Ufkes, 2020, 2022

10

Today

© Alex Ufkes, 2020, 2022

Imperative programming paradigm
Object Oriented Programming
The Smalltalk programming language

11

Imperative Language Paradigm

‘

PROGRAMMING
LANGUAGE y

Java

© Alex Ufkes, 2020, 2022

12

Imperative Language Paradigm

This is what you’re familiar with, assuming you’ve taken C/CPS 109/209

public class Tester

{

Imperative programming public static void main(String[] args)
use{ statements Jo change {
a program’” int y =0, x = 0,
program{stae:) ?

X = 7; Statements
y = X*2;

© Alex Ufkes, 2020, 2022

13

Program State

public class Tester

{
Programs store public static void main(String[] args)
data in variables {
int v = 68, x = 0;
Variables represent locations X = 7;
in the computer’s memory y = X*2;

}

}

The contents of memory in use by a program, at any given time during
its execution, is called the program’s state.

© Alex Ufkes, 2020, 2022

14

Statements can cause a public class Tester

program to change state: {
public static void main(String[] args)
X Yy {
int y = 08, X = 0, <——
State 1) 0 0 Y = T
= . —
State 2) 7 0 } y = xxz]
State 3) 7 14 }

Fundamentally, everything is done by changing values of variables

© Alex Ufkes, 2020, 2022

15

Everyday Example?

State variables:
e Channel
e Volume

* We must know the current state of the TV, or “Volume Up”
and “Channel Down” can’t be properly defined.

* Thus, current volume and channel are part of the TV’s state.

© Alex Ufkes, 2020, 2022

16

Emulator Save States

* |f you’'ve ever played a console emulator with a “save state”
option, this is how they work.

* A save state is simply a memory dump of the console’s RAM.

y SupER NNTENDD

. 0 L

© Alex Ufkes, 2020, 2022

17

Why Imperative?

Recipes, checklists, IKEA instructions, etc. are all familiar concepts.

These things are not computer programs but are similar
in style to imperative programming.

Understanding imperative programming is thus less of
a conceptual leap for the novice programmer.

© Alex Ufkes, 2020, 2022

18

Evidence?

(Before switching to Python) Ryerson taught multiple versions of CPS109:
* Obijects first (for people with programming experience)
e Obijects later (for people new to programming)

CAY HORSTMANN

Begins straight away with OOP
principles, objects and classes.

"i SNaE - SNUh
o JRC Y (VY

Focuses on imperative paradigm
before introducing OOP abstraction Latﬂ Uh]BCtS

© Alex Ufkes, 2020, 2022

19

Why Imperative?

Machine code is imperative, and nearly all computer
hardware is designed to execute machine code.

From this low-level perspective, “state” From a high-level language perspective,
can be described in terms of memory state is described in terms of variables
locations and machine instructions. and more complex statements

public static void main(String[] args)

{
int y = 6, x = 0;
X = 7
y = X*2;
© Alex Ufkes, 2020, 2022 20

In other words, we woulc
an alternative to im

want a good reason to seek

oerative programming.

21

Imperative Drawbacks?

* Fine fol small programs, rasy to keep track of a small number of variables.

» Difficult to scale up, both i terms of code size and parallelism.

* |t gets very hard to model a program’s state in one’s head. This leads to
convoluted debugging technigues:

printf("v
printf("v
printf("v
printf("v
printf("v
printf("v

[ak] [v W (AN] [ak]

system("

C C C C C

m M e MMM M

C still dominates in embedded systems

Procedural Programming

State changes are localized (partially or entirely) to procedures
(functions/subroutines).

Makes imperative programs far more readable, simplifies coding,
and allows for code reuse between programmers.

In C, instead of having 1000 lines of code in our main() function, we
keep main() as short as possible and add user-defined functions.

© Alex Ufkes, 2020, 2022

23

Bflc

-
1

=

at dotProduct(float * , Tloat* int n)
int 1ij;
float angle = B8, vecllen = 8, vec2len = 8;
for (i = 8; 1 < n; i++) {
angle += [1] * [1];
vecllen += [1] * [i];
vec2len += [1] * [i];
¥
angle = (float)acos(angle / (sqrtf(vecllen)*sqrtf{vec2len)));
return (float)(angle*(180.8 / 1);
oid crossProduct(float * , Tloat* , Tloat *)
[e] = [1] * [2] - [1] * [2];
[1] = [8] * [2] - (6] * [2];
[2] = [e] = [1] - [1] * [e];
oid matMul(float * , int , int loat * , int , int
int l.' j.’ k.'
ik (1 =8; 1< ; i++)
for (3 = 0; j < c2; j++) {
[(i*c2) + j] = @;
f (k = 8; k < s k++)
[(i*c2) + j] += [(i*cl) + k] * [(k*
¥
t main(void)

Example:

C doesn’t have native support

for matrix operations.
Write our own functions rather
than duplicating code in main()

“Makes imperative programs far more readable, simplifies
coding, and allow for code reuse between programmers.”

If procedures are well written, it is often possible to discern what a
procedure does based solely on the name and parameter list.

addVectorElements(

sum +=

© Alex Ufkes, 2020, 2022

25

In Summary

Imperative paradigm uses statements to change a program’s state.
* The programmer specifies an explicit sequence of steps for the
program to follow.

Adding procedures/functions/subroutines can improve scalability.

 Code can be made more readable, less duplication, easier to reuse.

* Principle of modularity — separate program functionality into
independent, interchangeable modules.

© Alex Ufkes, 2020, 2022

26

Alternatives?

Two widely usec

Functional Programming: Object Oriented Programming:
 Avoid changing state, avoid “Pure” OO languages treat even

mutable data primitives and operators as objects
* Declarative rather than imperative * Java/C++ and others support OOP
* Tell the program where to go, not to greater or lesser degrees.

how to get there.
SMALLTALK- 80

THE LANGUAGE

Adele Goldberg and David Robson

© Alex Ufkes, 2020, 2022

27

Going forward, always remember:

The line between different paradigms is grey.
Paradigms classify languages based on their features

Any given language can possess features from multiple
paradigms and thus belong to all.

Cis considered a very imperative language, but it
supports first class functions using function pointers.

© Alex Ufkes, 2020, 2022

» Relativistic programming
+ Data-driven
« Declarative (contrast: Imperative)
« Functional
» Functional logic
» Purely functional
« Logic
» Abductive logic
& Answer set
« Concurrent logic
« Functional logic
» Inductive logic
« Constraint

=« Constraint logic

« Concurrent constraint logic

e [Dataflow
s« Flow-based
» Cell-oriented (spreadsheets)
» Reactive
» Dynamic/scripting
s Event-driven
» Senvice-oriented
o Time-driven
« Function-level {contrast: Value-level)
+ Point-free style

» Concatenative

s |mperative (contrast: Declarative)

* Procedura

e Object-oriented

+ Language-oriented
« Matural-language programming
& Discipline-specific
« Domain-specific

28

Object Oriented Paradigm

© Alex Ufkes, 2020, 2022

29

Objects?

Broadly speaking, a software construct that implements both state and behavior.

We can also say that objects have identity. Unique instances of the same
class can exist simultaneously.

In Java, behaviors are implemented as methods, C++ as member functions. Same idea.

An object’s procedures can access and modify the data fields of that object.

In the OOP paradigm, programs are built up of objects that communicate
with each other.

© Alex Ufkes, 2020, 2022

30

Objects

Broadly speaking, a software construct that implements both state and behavior.

public class Tester

{

public static void main(String[] args)

(. | * These are primitives.
it x, vy, z, /1 Not objects: * They have a state, but
Integer xyz: // Object! . T

J 4 - J _ no associated behavior.
double a, b, c¢; // Not objects! N] g hod
Double abc: // Object! O assoclated methoads.
String word; // Object!
Y
}

© Alex Ufkes, 2020, 2022

31

Objects

Broadly speaking, a software construct that implements both state and behavior.

public class Tester

{
public static void main(String[] args)
{
int x, v, Z: // Not objects! .
Y R : These are Objects.
Integer xvyz; // Object! hev h both
double a, b, c¢; // Not objects! They ave. ot aStat.e'
Double abc: // Object! and associated behaviors.
String word: // Object! Behaviors implemented
} via class methods.
Y

© Alex Ufkes, 2020, 2022

32

ci_i; Java Class-Based OOP

—

* Objects are instances of classes
 The class is the cookie cutter, the object is the cookie.

public class Tester

{ public class HelloWorld
public static void main(String[] args) {
{ public void print()
HelloWorl§l h1 new HelloWorld(); {

HelloWorlf@l h2 new HelloWorld();
HelloWorlf@ h3 new HelloWorld();
h1.print(])5

h2.print(): Object instances

h3.print(); Class definition

System.out.println("Hello, World!");

s
© Alex Ufkes, 2020, 2022 33

g) Java Class-Based OOP

 Objects are instances of classes
 The class is the cookie cutter, the object is the cookie.
* OOP languages typically support notions of inheritance.

* Integer inherits from Number
* Number inherits from Object.

Class Integer

java.lang.Object
java.lang.Number
java.lang.Integer

All Implemented Interfaces:

Serializable, Comparable<Integer=

public final class Integer
extends Number
implements Comparable<Integer=

© Alex Ufkes, 2020, 2022 34

OOP: In Summary

Programs are built up of objects that communicate with each other.

* Objects combine attributes (data, variables) and procedures
(functions, methods).

* Most common are class-based OOP languages (C++, Java). Objects
are instances of classes.

* I|deas like inheritance provide code reusability.

OOP languages are still largely imperative.
* Class methods can implement behaviors, providing abstraction.

© Alex Ufkes, 2020, 2022

35

Object Oriented Programming

“Object-oriented programming is an
exceptionally bad idea which could only
have originated in California.”

“Object oriented programs are offered
as alternatives to correct ones...”

- Edsger Dijkstra

© Alex Ufkes, 2020, 2022 36

Smalltalk: OOP cranked up to 11

© Alex Ufkes, 2020, 2022

37

Syntax VS Semantics

 The externally visible representation of a program
 Based on sequence of characters (text-based languages)
e Easily understood in the context of a syntax error:

public class Tester

{
public static void main(String[] args)
{
int x =4, vy = 6;
int z = x + vy;
System.out.println(z);
}
}

© Alex Ufkes, 2020, 2022

This Java code is syntactically correct.
We know this because it compiles.
The sequence of characters that
comprise the source code make sense
in the context of the Java language.

38

Syntax VS Semantics

 The externally visible representation of a program
 Based on sequence of characters (text-based languages)
e Easily understood in the context of a syntax error:

public class Tester

{ * This Java code contains syntax

public static void main(String[] args) .

{ errors. It does not compile.
inx=4:y =6 The sequence of characters that
int z = X + y; comprise this source code does
Sys.out.prinln(z; NOT make sense!

}

}

© Alex Ufkes, 2020, 2022 39

Simplicity - How much to learn:

e Size of grammar. How “much” syntax is there?
 Complexity of navigating modules or classes
 Complexity of type system (how many types?)

rA feyv More things

Orthogonality - How hard to learn, how do features interact:
* How many ways can we combine grammar elements
* Type system overall (static, dynamic)

Extensibility:
Do mechanisms exist to extend the language?
* Functionally, syntactically, defining literals, overloading, etc.

40

Syntax VS Semantics

e |f syntax is the form, semantics is the meaning. What does the code do?
* (Can be understood by showing relationship between input and output
* Code can be syntactically correct but have an unclear meaning.

public class Tester

{
public static void main(String[] args)
{ * This code is syntactically correct.
S =1 | e Semantically, it is somewhat
System.out.println("Hello");)
o confusing.
System.out.println("World");
h
b

© Alex Ufkes, 2020, 2022 41

public class Tester

{

public static void main(String[] args)

{
if (1 == 1)
1) System.out.println("Hello");
else

System.out.println("World");

}

public class Tester

{

public static void main(String[] args)

{
2) System.out.println("Hello");

}
b

This code is syntactically correct.
Semantically, it is confusing.
Semantically, It is the same as:

An understanding of a language’s
semantics allows us to look at 1), and
understand it as being the same as 2)
Leads to more efficient machine code.

“A compiler will complain about syntax, your coworkers will complain about semantics”

© Alex Ufkes, 2020, 2022

42

Pragmatics

 What can a particular language construct be used for.
e Consider the humble assignment operator (=):

public class Tester

{
public static void main(String[] args)
{
inta=1, b=2, ¢ =3,
int d =a + b;
sum = d + c;
System.out.println(sum);
h
b

© Alex Ufkes, 2020, 2022

1. Initialize variables with constants

2. Initialize variable with result of
sum of two other variables.

3. Store sum of two variables in a
variable

However! The assighment
operator can’t typically be used
to clone arrays/objects.

43

Implementation

e A particular set of pragmatics that makes a program executable
* Multiple unique implementations can solve the same problem

public class Tester public class Tester

{
. _ _ _ _ {
2Ub119 static void main(String[] args) public static void main(String[] args)
{
inta=1, b=2, ¢c =3, sum; inta=1 b=2 ¢ =23 sum*
int d = a + b; sum = a + b + c:
sum = d + ¢, System.out.println(sum);
System.out.println(sum); }
b h
}

These implementations are slightly different but solve the same

problem of summing three numbers and printing the result

© Alex Ufkes, 2020, 2022

Programming Language Characteristics

Syntax — Language form:

e Simplicity, how much to learn

* Orthogonality, how hard to learn, how do features interact

* Extensibility, can the language be extended by the programmer

Semantics — Language meaning:
* What does a block of code actually do/mean

Pragmatics:
 What can a particular language construct be used for.

Implementation:
* A particular set of pragmatics that makes a program executable.

45

fTrue: [car honk]

2020, 2022

© Alex Ufkes,

Alan Kay

© Alex Ufkes, 2020, 2022

Coined the term Object Oriented Programming
in grad school, 1966/67

Big idea:

* Use encapsulated “mini computers” in software

 Communicate via message passing, rather than
direct data sharing

* Each mini computer has its own isolated state

* Inspired by biology, cellular communication.

* Avoid breaking down programs into separate
data structures and procedures.

47

Alan Kay

© Alex Ufkes, 2020, 2022

In pursuit of this idea:
* Developed Smalltalk along with Dan Ingalls,
Adele Goldberg, and others at Xerox PARC.

* Originally, Smalltalk did not feature sub-classing.

» Kay considers sub-classing a distraction from
OOP’s true benefits: message passing.

48

Alan Kay

© Alex Ufkes, 2020, 2022

“I'm sorry that | long ago coined the term “objects”
for this topic because it gets many people to focus
on the lesser idea. The big idea is messaging.”

“O0P to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things..”

49

Alan Kay

© Alex Ufkes, 2020, 2022

According to Kay, the essential
ingredients of OOP are:

1. Message passing
2. Encapsulation
3. Dynamic binding

Conspicuously missing from this list?

Inheritance, sub-class polymorphism

50

Alan Kay

© Alex Ufkes, 2020, 2022

“Java is the most distressing thing to happen
to computing since MS-DOS.”

“I made up the term ‘object-oriented’, and |
can tell you | didn’t have C++ in mind.”

51

Smalltalk

SMALLIALK- 80O

THE LANGUAGE

Adele Goldberg and David Robson

© Alex Ufkes, 2020, 2022

History:

“Smalltalk” typically refers to Smalltalk-80
However, first version was Smalltalk-71

Created in a few mornings of work by Kay on a bet
that it could be implemented in a “page of code”.
Smalltalk-72 was more full-featured, used for
research at Xerox PARC

Smalltalk-76 saw performance-enhancing revisions
Smalltalk-80 V1 was given to select companies for
peer review

Smalltalk-80 V2 was released to the public in 1983.

52

Overview

Smalltalk is the prototypical class-based, object-oriented language.

There are no primitives: No int X, double vy, etc.

Control structures are methods:
e Noif/else/while/for syntax constructs.
e Control flow implemented via blocks and message passing.

* Its syntax is very minimal — famously fits on a postcard

* Objects (and message passing!) are central — Unlike Java
and C++, there are no primitives. Everything is an object.

* Pure object-oriented.

© Alex Ufkes, 2020, 2022 SNMLLMLK- 8@

THE LANGUAGE

Pure Object-Oriented

* Everything is an object. Everything is an instance of a corresponding class.

Recall cookie/cookie cutter analogy.
* Class-based. Every object has a class that defines the structure of that object

* C(lasses (the cookie cutter!) themselves are also objects.
o Each class is an instance of the metaclass of that object.
o Each metaclass is an instance of a class called Metaclass

Your brain right NOW: =)

© Alex Ufkes, 2020, 2022 SN'ALLMLK- 80

THE LANGUAGE

Class Hierarchy

You’ve seen Java’s:

© Alex Ufkes, 2020, 2022

55

Iterable

Interface J ava T
| Abstract Class COl |€Ct|OnSZ Collection

Class

Object

sSet List Queue AbstactCollection

LY e
i % # " F \.
SortedSet AbstactSet Deque AhstractListJ AbstractQueue
T L% s L% ’
NavigableSet . -
AbstractSequentiallList
TreeSet LinkedList ArrayList Vector PriorityQueue

|

© Alex Ufkes, 2020, 2022 Stack

Java Swing

Object

o

Component
Components: A)

Container <>>— [ayoutManager

JComponent
— JPanel — JLabel — JFileChooser
—3JScrollPane [~ JComboBox | [~ JColorChooser | oloxtCompenent
— JTabbedPane — JMenuBar — ITree
— JRootPane — JToolBar — JTable
—JInternalF rame —JProgressBar — JList

— AbstractButton

— JSplitPane — JSlider
—JLayeredPane| [— J5crollBar
— JOptionPane — JPopupMenu

© Alex Ufkes, 2020, 2022

JPasswordField

JTextField <J—[
JFormattedTextField

JTextArea

JTextEditorPane <<}— JTextPane

JCheckBox
JToggleButton-{}[

JRadiocButton
JButton

JMenultem <7}— JMenu

57

Class Hierarchy

In Smalltalk?

Metaclass

© Alex Ufkes, 2020, 2022

(intermediate
classes not
shown)

(intermediate
classes not
shown)

Bar's metaclass

58

* C(Classes (the cookie cutter!) themselves are also objects.

o Each class is instance of the metaclass of that object.

o Each metaclass is an instance of a class called Metaclass

Metaclass's
metaclass

I

metaclass

e P

Metaclass

(intermediate
classes not
shown)

(intermediate
classes not
shown)

Foo's metaclass

I

instance of
Object

Foo

| Bar's metaclass

:

Bar

i'

I

instance of Foo

I

instance of Bar

59

Objects in Smalltalk

Everything is an object. Everything is an instance of a corresponding class.

A Smalltalk object can do exactly three things:

1. Hold state (assignment)

2. Receive a message (from itself or another object)
3. Send message (to itself or another object)

Message passing is central in Smalltalk. Understand message passing,
understand Smalltalk.

© Alex Ufkes, 2020, 2022 SMALLMLK- BQ

THE LANGUAGE

Message Passing

Passing a message to an object is semantically equivalent to
invoking one of its methods:

When an object receives a message:

* Search the object’s class for an appropriate

method to deal with the message.
* Not found? check superclass (inheritance!)
* Repeat until method is found, or we hit
class “Object”. Much like Java.
 Still not found? Throw exception.

© Alex Ufkes, 2020, 2022

Object’s

. metaclass

Foo's metaclass kﬁ

Bar's metaclass

:

Object kﬁ

:

instance of

Object

instance of Foo

instance of Bar

61

Message Passing

Message passing drives all computation in Smalltalk.
For every snippet of Smalltalk code we see, look at it in terms of message passing.
What messages are being sent? What objects are they being sent to?

Understand message passing, understand Smalltalk.

“I'm sorry that | long ago coined the term “objects” for this topic because it gets

many people to focus on the lesser idea. The big idea is messaging.”

- Alan Kay

© Alex Ufkes, 2020, 2022

62

https://pharo.org/

The immersive programming experience

Pharo is a pure object-oriented programming language and a powerful environment, focused on

simplicity and immediate feedback (think IDE and OS rolled into one).

[NN A Pharo

Playground
Random==fine

debugit
Stack _ Proceed Restart
U}

UndefinedObject - Dolt

CompiledMethod valuewithReceiverarguments:

© Alex Ufkes, 2020, 2022 S | | S 63

Phar

* Pharo is a GUI-based programming environment for the Smalltalk language.

 Smalltalk is based on a virtual machine, similar to Java, which interprets
bytecode and makes it platform independent.

* One of the unique features of Smalltalk is that all development and changes
are done in the Smalltalk environment itself.

e All classes (including their code) and objects (including their state) are stored
inside an image that encapsulates the complete state of the system.

 When you save the image, close the VM, and then re-open it again, perhaps
on another machine, everything will be exactly as you left it.

© Alex Ufkes, 2020, 2022 64

List of implementations |edit]

© Alex

Amber Smalltalk Smalltalk running atop JavaScript
Athenad?, Smalltalk scripting engine for Java = 1.6
Bistro
Cincom has the following Smalltalk products: ObjectStudio, VisualWorks and WebWelocity.
Visual Smalltalk Enterprise, and family, including Smalltalk/v
Cuis Smallitalk, open source, modem Smalltalk-80 [3] &
« Cog, JIT VM written in Squeak Smalltalk
F-Script
GemTalk Systems, GemStone/s
GNU Smalltalk
« Etoilé Pragmatic Smalltalk, Smalltalk for Etcilé, a GNUstep-based user environment
« StepTalk, GNUstep scripting framework uses Smalltalk language on an Cbjective-C runtime
Gravel Smalltalk, a Smalltalk implementation for the JVII
Instantiations, VA Smalltalk being the follow-on to IBM VisualAge Smalltalk
« VisualAge Smallitalk
Little Smalltalk
Object Arts, Dolphin Smalltalk
Object Connect, Smalltalk MT Smalltalk for Windows
Objective-Smalitalk, Smalltalk on Objective-C runtime with extensions for Software Architecture
« LSW Vision-Smalltalk have partnered with Object Arts
Panda Smalltalk&, open source engine, written in C, has no dependencies except libc
Pharo Smalltalk, Pharo Project's open-source multi-platform Smalltalk —
s Cog, JIT VM written in Squeak Smalltalk
Pocket Smalltalk, runs on Palm Pilot
Redline Smalltalk, runs on the Java virtual machinel®3!
Refactory, produces #3malltalk
Smalltalk ¥X
Smalltalk/xP4
Squeak, open source Smalltalk
e Cog, JIT VM written in Squeak Smalltalk
« CogDroid, port of non-JIT variant of Cog VM to Android
« 2Toys, eToys visual programming system for learming
« iSqueak, Squeak interpreter port for iOS devices, iIPhone/iPad
s JSqueak, Squeak interpreter written in Java
« Potato, Squeak interpreter written in Java, a direct derivative of JSqueak

Uﬂ?é/g %263 rzlezizmanycore interpreter for Squeak and Pharo

Strongtalk, for Windows, offers optional strong typing
Vieta Smallialle

There are many different Smalltalk
implementations.

Each may have subtle differences in
their syntax and major differences in
their class organization.

When/if Googling for help, it’s useful to
specify the specific implementation
(Pharo for this course).

65

Pharo: Smalltalk IDE

© Alex Ufke

(¢ Pharo Launcher — O *
3 v P > BB ¥ C O @ 2 ¥ o H
Hew Launch | Basiclau, Fromdisk Import Refresh | Show Deleta WMz Settings About Quit

= Name = Architecture < Pharo Versio ¢ Last modified

x — 0O Pharo Launcher - Image creation -
1. Choose a template category: 2. Choose a template: Image name:
Templates Pharo 9.0 - 32bit (development} o o 0 gabit (stable) v
Pharo Mooc Pharo 9.0 - 64bit (development 1

C000TT000>

Mo image selec
description:

Official distributions
Deprecated distributions
Pharo Contribution Jenkins
Moose Jenkins

Pharo 8.0 (stable)

Pharo 9.0 (development versic
Pharo loT (PharoThings)
Pharo Remote Development (1

Pharo 8.0 - 32bit (stable)

Pharo 8.0 - 64bit (stable)

Pharo 7.0 - 32bit (old stable)
Pharo 7.0 - 64bit (old stable)
Moose Suite 9.0 (development)
Moose Suite 8.0 (stable)

Image description:

Pharo Launcher:
"% e Pick most recent stable distribution
 Don’t use the development version,

unless you enjoy bugs and pain.
* | recommend Pharo 8.0, 64bit

¥ Create image

T O S T LT it

Nifty Pharo Reference:
http://files.pharo.org/media/pharoCheatSheet.pdf

Nifty Squeak Reference:
http://squeak.org/documentation/terse_guide/

* Squeak is a different Smalltalk implementation.

* Most of the syntax is the same, and this terse guide is very
conveniently laid out as a reference to use while coding.

e (Pharois a commercial derivative of Squeak)

© Alex Ufkes, 2020, 2022

67

© Alex Ufkes, 2020, 2022

Mo

Community []] & Downloads Features Projects & 2 e
===
Transcript clear. "clear to transcript window"
Transcript show: "Hello World'. "output string iIn transcript window”
Transcript nextPutAll: 'Hello world'. "output string In transcript window"
Transcript nextPut: SA. "output character iIn transcript window
Transcript space. "output space character in transcript
Transcript tab. “output tab character iIn transcript wi
Transcript cr. “carriage return / linefeed”
'Hello' printOn: Transcript. “append print string inte the window"
‘Hello' storeOn: Transcript. "append store string Inte the window"
Transcript endEntry. “flush the output buffer”
+ g

Assignment

| xy |
x _ 4. "assignment (Squeak) <-"
X 1= 5. "assignment "
X 1=y =2 = 6. "compound assignment"
x 1=y = 6) + 1.
% := Object new. "bind to allocated instance of a class
% 1= 123 class. "discover the object class”
% := Integer superclass. "discover the superclass of a class”
% := Object allInstances. "get an array of all instances of a cl
% := Integer allSuperclasses. "get all superclasses of a class"
% := 1.2 hash. “hash value for object”
y = X copy. “copy object”
y := x shallowCopy. "copy object (not overridden)"”
y = x deepCopy. "copy object and instance vars"
y = x veryDeepCopy. “complete tree copy using a dictionary

g | r

Consta

b x|
true.
false
nil.
1.
3.14.
2e-2.
16r@F
-1.
"Hell
‘I''m
SA.

5 .
#asym
#(3 2
#('ab

oM oM oM OMOM MM MMM KX OO—

Boolea

L=
nn
=
[P
I ==

nts

o'.
hera'.

bol.
1).
c' 2 %al.

ns

"true constant”

“false constant”

"nil object constant"”
"integer constants"”
“float constants”
"fractional constants"
“hex constant”

"negative constants”
"string constant”

"single quote escape”
“character constant”
“character constant (space)
"symbol constants"

"array constants”

“mixing of types allowed”

"

"equals”

68

' Pharo Virtual Machine! (Ch\Usersh\aufke\Documents\Pharchimages\Pharo 8.0 - 32bit (development version, latest)\Pharo 8.0 - 32bit (development version, latest).image)

- Pharo Tools System Debugging Windows Help

Playground ¥ £ e 3 current image
Page i B3 AsT-Core

[AST-Core-Tests
ST Class browser:
o e et * Here we can browse the entire

Playground window: S Smalltalk class hierarchy
[E1 Athens-Cairo .

Sma”talk COde goes here E:c:ens—iairo—Tests We Can aISO add and edlt Our

[Athens-Core
B Athens Drarple own custom classes here
B3 Athens-Morphic
All Packages Scoped View

Transcript New class

Object subclass: :
instanceVariableNames:
classVariableNames:
package:

Transcript window: Class implementation can be

Output is printed here viewed and modified here

W slots

2 @b e Plagmuna [Janstpt

Pharo: Smalltalk IDE

(¢ Pharo Virtual Machine! (C\Users\aufke\Docurnents\Pharchimages\Pharo 8.0 - 32bit (development version, latest]\Pharo 8.0 - 32bit (development version, latest).image) - O
. Pharo Tools System Debugging Windows]

Playground Transcript

We'll typically keep the class browser
collapsed for our in-class examples

Plagarapym Thamsorint

Hello, World!

% Phare Virtual Machine! (C\Users\aufke\Documents\Pharohimages\Pharo 8.0 - 32bit (development version, latest]\Pharo 8.0 - 32bit (development version, latest).image) - O
. Pharo Tools System Debugging Windows]
Playground ‘ Transcript
Page B Hello, World!

Transcript show:

Fage

Transcript show:

i

* We are passing the show: message to the Transcript object.
* This message includes one argument, a string literal ‘Hello, World!’

Playgronap T)anpript

Transcript show:

(¢ Pharo Virtual Machine ! 32bit (development version, latest)\Pharo 8.0 - 32bit (development version, latest).image)
Pharo Tools System Debugging Windows]
ThreadSafeTranscript>>show:
B Traitsv2 Wi instance side .=, nextPutAll:
3 Traitsv2-Compatibility @ ThreadSafeTranscript extensions =l oper

: accessing openLabe
[EJ Transcript-Core initialization print:

printing printOn:
EJ Transcript-Noninteractive protected low level
1 Transcript-Noninteractive-Tests self evaluating
E3 Transcript-Tool streaming
Eilt Filt ui building stepGlobal

All Packages Scoped View | Flat Hier. | Inst.side Classside | Methods Vars | Class ref: mplementors Senders

Comment @ ThreadSafeTrans: =] show: Inst. side method

show: anObject

critical: [print: anObject; endEntry]

1/4[15] # streaming M extension M F +L W

fR:Sgratind Téanserift [T ThreadSafeTranscript>>show:

Messages: Unary

Think of every Smalltalk statement in terms of message passing:

X := 16 sqgrt.
Only 3 operations: k /

* Assignment
* Send message The message sqrt is
* Receive message sent to the object 16

In Java, we’d say: x = Math.sqgrt(16);

© Alex Ufkes, 2020, 2022

74

Messages: Unary

Think of every Smalltalk statement in terms of message passing:

X := 16 sqgrt.
Only 3 operations: k /

* Assignment
* Send message The message sqrt is
* Receive message sent to the object 16

* 16 is an instance of the SmallInteger class.
 SmallInteger handles the message (if it knows how)
e Returns the result of the square root (in this case 4)

o 4isan object!

© Alex Ufkes, 2020, 2022

75

Messages: Unary

Think of every Smalltalk statement in terms of message passing:

Only 3 operations:
* Assignment

* Send message Result assighed to x

* Receive message

* 16 is aninstance of the SmallInteger class.

* SmallInteger handles the message (if it knows how)

e Returns the result of the square root (in this case 4)

* x now references the result—a SmallInteger object, 4

© Alex Ufkes, 2020, 2022

76

Messages: Unary

Think of every Smalltalk statement in terms of message passing:

X := 16 sqgrt.

Unary messages are passed without arguments

Unary Messages:
sqrt, squared, asInteger
class, cr, floor, ceiling
sin, cos, tan
Any message without argument(s)

© Alex Ufkes, 2020, 2022

Messages in Smalltalk

© Alex Ufkes, 2020, 20

Think of every Smalltalk statement in terms of message passing:

Playground

Page
Bl Dot separates Smalltalk statements
L. Cript
x := 16 sqdft. I
)

Transcrint ~leoar SmallInteger

Transcript show: x; cr.

Sl b © Semi-colon allows us to cascade multiple
messages to an object (Transcript here)

e cristhe code for carriage return (newline)

78

Messages: Binary

. The message + is passed to
X =3+ 4 object 3 with the argument 4

Binary messages are strictly between two objects.
Symbolic operators are binary messages.

Binary Messages:

+, -, *J /: //) \\
=, ==, ¢) <=, >) >=
Arithmetic, comparison, etc.

© Alex Ufkes, 2020, 2022

Messages: Keyword

Three kinds:
12- ‘é{‘na;ryy X := 2 raisedTo: 4.

3. Keyword
« 2isthereceiving object

 raisedTo: is the message
e 4istheargument
 Thisis called a “keyword” message

Keyword messages can contain any number of arguments.

Keyword messages include a colon. Quick and easy way to differentiate.

80

Multiple Arguments

X := ‘Hello’ indexOf: $o startingAt: 2.

* The actual message is indexOf:startingAt:
* Smalltalk interleaves arguments.
* Meant to improve readability.

© Alex Ufkes, 2020, 2022

81

Multiple Arguments: Interleaving

Don’t be confused!

X := ‘Hello’ indexOf: $o startingAt: 2.

Semantically identical Java syntax is as follows:
X = “Hello”.indexOf(‘0’, 2);

Argument interleaving has other implications that we’ll explore later.

© Alex Ufkes, 2020, 2022

82

String==indexOf:startingAt:

» [Collections-Stack String » instance side & : indentationIfBlank:
» [Collections-Streams » O extensions indexcif
¥ [Collections-Strings O flags
Base ByteSymbol accessing geAULSATUNEACTTADSEL
Manifest WideSymbol comparing @ indexOfFirstUppercaseCharacter
» [Collections-Support WideString converting indexOfSubCollection:
Filter... Filter... copying w | ® indexOfSubCollection:startingAt:

® AllPackages ScopedView | ® Flat Hier. | ® Inst.side Classside | ® Methods Vars | Classrefs. O Implementors ©) Senders
? Comment @ String ‘&l indexOf:startingA + Inst. side method AU AQAF «=»

® index0f: aCharacter startingAt: start

abcdf abcedf' indexOf: $Sa startingAt: 4) >>> 7
abddf bcdef' index0f: Sa starting) >>> @

(=

"N
"

(aCharacter isCharacter) ifFalse: [* @8].
LT class indexOfAscii: aCharacter asciiValue inString: =self startingAt: start

J@'mex Ufkes, 2020, 2022 ¢ accessing I extension I F +L w

Message Summary

Unary Messages: Binary Messages: Keyword Messages:
sqrt, squared +, -, *, / raisedTo:
asInteger //, \\ bitAnd:, bitOr:
class, N c——ly =, ==, —_— show:
floor, ceiling <, <=, >, >= ifTrue:ifFalse:
sin, cos, tan
Arithmetic, Message with one or
Any message without comparison, etc. more arguments,
argument(s) ending in colon:

http://squeak.org/documentation/terse_guide/

© Alex Ufkes, 2020, 2022 84

In Smalltalk, you can send any message to any object. If the object doesn’t
know what to do with the message, a run-time error occurs.

' Phare Virtual Machine! (C:\Users\aufkeDocuments\Pharo\images\Pharo 8.0 - 32bit (development version, latest)\... - L]
- Pharo Tools System Debugging Windows Help
Playground . R e Transcript
Instance of Smalllnteger did not understand #blahblah Bytecode B

Stack Create » Proceed Restart Into # Over Through
UndefinedObject Dolt

Ninali-nmnilor cnraluata

Send message blahblah to Source Whereis? |4 Browse
SmallInteger object 3. DoIt

Variables Evaluator

Type Variable
[Fr—r——y calf

Playgnound Jranscript

Smalltalk Literals

Numbers: 42, -42, 123.45, 1.2345e2, 2r10010010, 16rA000
Characters: DenotedbyaS-$A, $8, $?

Strings: Denoted with single quotes: ‘Hello, World!’

Comments: Double quotes-“This is a Smalltalk comment”

.Y Pharo Virtual Machine! (ChUsershaufke\Documents\PharotimagesiPharo 8.0 - 32bit (development version, latest)\Pharo 8.0 - 32bit (development version,... — O >

. Pharo Tools System Debugging Windows Help

Playground Transcript

Hello, World!42
42.8

42

42

Transcript clear.

Transcript show:

Transcript show: 42; cr.
Transcript show: 4.2elj cr.
Transcript show: 2rl9lel@; cr.
Transcript show: 16r2A; cr.

* Must be declared before use.
Sma“ta\k * Variables are references to objects.
. * Most common are instance and temporary variables.
es
Vaf\ab\ Temporary variables declared inside vertical bars: | xvy |

' Pharo Virtual Machine! (ChUsers\aufke\Documen : ersion, latest)\...
: Tools System Debugging Te m pO ra ry varia b I es
Playground declared at the top! Transcript

I 16

_—

Transcript clear.

Arithmetic!

* Symbolic operators mean what we’d expect.
* Plusis addition, asterisk is multiplication, etc.
* Assignment is done using :=

5 &+ 7

“

7 + 15.

Transcript show:
Transcript show: vy;

© Alex 87

#(Arrays)

Array of literals (static):

« #(1 2 3 4 5) Arrayof integers, numbers separated by spaces
e #(1 2.0 ‘Hello’ #(‘World’))

e Arrays in Smalltalk can contain any object. Heterogeneous.

Playground Transcript

#(1 2 3 4 5)
#(1 2.0 'Hello' #('World'))

Transcript clear.

a
b

:= #(1 2 3 45).
:= #(1 2.0 'Hello' #('World')).

Transcript show: a; cr.
Transcript show: b; cr.

88

#{Arrays}

Array of variables (dynamic):

e« #{a . b . c . d . e} Arrayofvariables
* Defined with curly braces, periods between elements.

Playground Transcript
#(2 4 6 8 10)
| abcde arr | Array

N A o T
b

L] c: -

Transcript show: arr; cr.

Transcript show: arr class. * Smalltalk knows how to print an entire array
* What about accessing individual elements?

89

Accessing Array Elements

* Use at: message with single argument indicated index

* Based on what is printed, we see that indexing in Smalltalk starts at 1!

* We need parentheses — Otherwise Pharo will read the message as
show:at: instead of show: and at: as separate messages

Playground Transcript

#("'World'")

Transcript clear.
a := #(1 2 3 45).

b = #(1 2.0 'Hellg' #('Warld')),
Transcript show: (a at: 3); cr. Brackets here are S|mply
TI"EI'ISCI"'ipt show: (b at: 4) y Cr. enforcing precedence

90

Accessing Array Elements

* We need parentheses — Otherwise Pharo will read the message as
show:at: instead of show: followed by at:

 Send at: message to a with argument 3, that result becomes the
argument of the show: message, sent to Transcript.

Playground Transcript

#("'World'")

Transcript clear.
a := #(1 2 3 45).
b .= #(1 2.0 'Hellg' #('World'))

Transcript show: (a at: 3); cr. Brackets here are simply
TI"EI'ISCI'"ipt show: (b at: 4); cr. enforc|ng precedence

91

#Symbols

followed by a string literal

 #°aSymbol’ sameas #aSymbol (quotesimplied)
 #°symbol one’ #¢symbol two’
 Symbol objects are globally unique. Strings are not.

Meaning:
* Two identical strings can exist as two separate objects

* For every unigue symbol value, there can be only one object.

© Alex Ufkes, 2020, 2022

92

- Pharo Tools System Debugging Windows Help

Playground Transcript

* Variables a and b might reference different objects, despite
the fact that the string literals are exactly the same.

e Variables x and y reference the same object. There can be
no two equal symbols which are different objects.

Playground Transcript

Let’s prove it!
© Alex Ufkes, 2020, 2022

93

Tools System Debugging Windows Help

Playground . o Transcript

i “Lie . .
: bl Same value, different object!

Declare two identical strings, but in different
- ways to ensure we get different objects.

ST S = e e * Compare strings. ‘=’ checks for same value,

Transcript show: : 13 cr. ‘==" checks if they are the same object.

Playground Transcript

© Alex Ufkes, 2020, 2022 94

! Pharo Virtual Machine! (C\Usershaufke\Documents\Pharo\images\Pharo 8.0 - 32bit (development version, latest)\... — [l

. Pharo Tools System
Playground
Fage

abxy
Transcript clear.

b := ,
Transcript show: :
Transcript show: :

Transcript show:

Playground Transcript

© Alex Ufkes, 2020, 2022

Debugging

Windows Help
¢ o Transcript
i true

false

true .
NP Same value, same object!

Symbol concatenation returns a string
Pass the asSymbol message to a string
to convert it to a symbol.

95

Symbols: What’s the point?

Checking for equal string value involves comparing individual characters.

This can be costly if the strings are long. Linear time operation.

Checking if two variables reference the same object is fast — single
integer comparison between addresses.

With symbols, if they reference different objects, they have different
values. The same cannot be said of strings.

© Alex Ufkes, 2020, 2022

96

Symbols: What’s the point?

Messages are symbols!

Given that message passing is central in Smalltalk,
we would expect to be doing a lot of it.

When a message is sent to an object:
» Search the object’s class for an appropriate method
o (Method whose name matches message.)

Symbols make each check constant time as opposed
to linear time. Very valuable!

© Alex Ufkes, 2020, 2022

97

In Smalltalk, you can send any message to any object. If the object doesn’t
know what to do with the message, a run-time error occurs.

' Phare Virtual Machine! (C:\Users\aufkeDocuments\Pharo\images\Pharo 8.0 - 32bit (development version, latest)\... — O

- Pharo Tools System Debugging Windows Help

Playground : L Transcript Symbol!

Instance of Smalllnteger did not understa 1d #blahblah Bytecode B

Stack Create » Proceed Restart Into # Over Through
UndefinedObject Dolt

Ninali-nmnilor cnraluata

Send message blahblah to Source Whereis? |4 Browse
SmallInteger object 3. DoIt

Variables Evaluator

Type Variable
[Fr—r——y calf

Playgnound Jranscript

Summary: Literals

XXX XX OO —

© Alex Ufkes, 2020, 2022

b x |

true.
false.
nil.
3.14.

2e-2.

16roF.

-1.

'Hello'.
‘I''m here'.
SA.

S .
#aSymbol.
3 2 1).

#('abc' 2 $a).

“true constant”
“false constant”

“nil object constant”
“integer constants"”
“float constants”
“fractional constants”
“hex constant”
“negative constants”
“string constant”
“single quote escape”
“character constant”

“character constant (space)”

“symbol constants"”
“array constants”
“mixing of types allowed”

99

o

© Alex Ufk)20, 2022 100

C/) Java

THE LANGUAGE

SMALLIALK- 80 V S

Arithmetic is largely the same in every language. Math is math.

' Phare Virtual Machine! (C:\Usersh\aufke'\DocumentsiPharc\images\Phareo 8.0 - 32bit (development version, latest)\... —] e
. Pharo Tools System Debugging Windows Help

Playg FoL r'll:j Tr=amermr mt

* So far, this is typical

) * Notice integer operations
Transcript clear. _ .
Tran_scr‘ipt show: 2) HI o g ; pI’Od uce |nteger reSUItS

Page

Transcript show: |
Transcript show: |

Division

Division is a coin toss. Truncate? Convert to float?

Pharo Tools System Debugging Windows
Playground : Transcript

Page

Transcript clear. -
Transcript show: (2 / 2); cr. Smalltalk has a

Transcript show: (2 / 2.0); cr. N fraction type!

Transcript show: (1 / 2.0); cr.
Transcript show: (1 / 2); cr.
Transcript show: (1 / 2) aslInteger; cr.

When we force the result to be integer, it truncates
102

Operator Precedence in (() Java

C:/_/
access amray element
16 : access object member left to right R
0 parentheses 9 > 3= relational not associative
instanceof
15 o unary post-increment not associative == _ _
== unary post-decrement 8 L equality left to right
-+ unary pre-increment 7 " bitwise AND left to right
- unary pre-decrement
: unarv plus (-] . bitwise XOR left to right
14 ~ " p_ right to left
. unary mints 5 bitwise OR left to right
' unary logical NOT
- unary bitwise NOT 4 &L logical AND left to right
cast o | logical OR left to right
13 "!w biect i right to left ‘ :
N object creation 2 2 ternary right to left
12 A multiplicative left to right o
. == f= g=
1 + - additive left to right 1 o assignment right to left

© Alex Ufkes, 2020, 2022

string concatenation

L= T PRHE

103

SMALLIALK- 80

Operator/Message Precedence in .

e Three levels! Unary -> Binary -> Keyword
* After that, ordering goes from left to right
* Brackets must be used to specify ordering outside of this.

Adele Goldberg and David Robson

' Phare Virtual Machine! (C\Users\aufke\Documents\Pharc\images'Pharo 8.0 - 32bit (development version, latest)\... — O 4
Tools System Debugging Windows Help

Playground Transcript

Transcript clear.
Transcript show: (
Transcript show: (

+ and * are both binary messages

104

New or Differing Operators

// Integer division
\\ Integer remainder
sgrt Square root

raisedTo: Exponentiation

Y Phare Virtual Machine! (C\Users\aufke\Documents\Pharchimages\Phare 8.0 - 32bit (development version, latest)\... —] >

Tools System Debugging Windows Help

Playground Transcript

Transcript

Transcript show: (5.2 f/ 2.5); «
Transcript show: (5 \\ 2); cr.
Transcript show: (9 sgrt); cr.
Transcript show: (5 raisedTo: 2); cr.

105

x := 5 sign. "numeric sign (1, -1 or 0)"

X := 5 negated. "negate receiver”

x := 1.2 integerPart. "Iinteger part of number (1.0)"

x = 1.2 fractionPart. “"fractional part of number (0.2)"

X := 5 reciprocal. "reciprocal function”

X =6 % 3.1. "auto convert to float”

X := 5 squared. "square function”

x = 25 sqrt. "square root"”

x := 5 ralsedTo: 2. "power function"”

X = 5 raisedjoskdas SSVEINEY: ki SRERCE VY-

X =5 exp. X := 1@0 floorLog: 10. “floor of the log”

X = -5 abs. x := 180 degreesToRadians. “convert degrees to radians”

¥ = 3.99 roull ¥ := 3.14 radiansToDegrees. “convert radians to degrees”

X = 3.99 trud X := sin. "sine"

¥ = 3.99 roul X := COS. "cosine”

X = 3.99 truf X := tan. “"tangent”

X = 3.99 flod X := arcSin. "arcsine”

X = 3.99 ceil X := arcCos. "arccosine”

x =5 factor] X := arcTan. "arctangent”

X := -5 quo: X := 1@ max: 20. "get maximum of two numbers”

X = -5 rem: X := 10 min: 20. “"get minimum of two numbers”

x := 28 gcd: J x := Float pi. pi”

x = 28 lecm: x := Float e. "exp constant”

x = 100 1n. x := Float infinity. "infinity"

x := 100 log.[| x := Float nan. "not-a-number”

x := 100 log:] X := Random new next; yourself. x next. “random number stream (0.0 to 1.0)"
b4 =

S Arex %@% ;&BE .= 100 atRandom. "quick random number" 106

Example: What is the Result?

Which messages are unary? Binary? Keyword?

3 factorial + 4 factorial between: 10 and: 100

1. factorial gets sent
to 3, then 4.

2. +issentto 6 with
24 as argument

6 + 24 between: 10 and: 100

30 between: 10 and: 100

3. between:and: sent to 30 with

10 and 100 as arguments true

© Alex Ufkes, 2020, 2022 107

0

! Pharo Virtual Machine! (C:\Users\aufke\Documents\Pharco\images\Pharo 8.0 - 32bit (development version, latest)\...

Pharo Tools System Debugging Windows Help

Playground A o 3 Transcript

lﬂ true

True
True class

3 factorial + 4 factorial between: 10 and: 100.

Transcript clear.

Transcript show: xj cr.

Transcript show: x class; cr.
Transcript show: x class class; cr.

Playground Transcript

© Alex Ufkes, 2020, 2022

es, 2020, 2022

(¢ Pharo Virtual Machine!

revaufkelDocuments\Pharotimages\Pharo 8.0 - 32bit (development version, latest)\Pharo 8.0 - 32bit (developrment version, latest).image)

Pharo Tools System Debugging Windows Help
Playground 3 &+

Page i EJ JenkinsTools-ExtraReports
E3 Jobs
EJ Jobs-Tests
B Kernel
EJ Kernel-BytecodeEncoders
Es Kernel-Chronology-Extras
EJ Kernel-Rules
EJ Kernel-Tests
EJ Kernel-Tests-Extended
EJ Kernel-Tests-Rules
EJ Kernel-Tests-WithCompiler
1 Kermal-Traite
All Packages Scoped View |

Transeript Comment @ Integer

‘ factorial

= 8 ifTrue:
> @ ifTrue:

error:

 We can see everything in the System Browser.

» All classes, all methods, everything.

Integer==factorial

Character
DateAndTime
Duration
Number
Float
BoxedFloatsd
SmallFloat64
Fraction
ScaledDecimal
Integer
Largelnteger

| arcaNacativalntac

Hier. | Inst. side Class side | Methods Vars | Class refs.

It’s recursive!

i factorial

- 1) factorial].

 Here is the factorial method defined in the Integer class.

AEyzAw Tegipt/ (17 Integizagiorial

instance side &l

B extensions

accessing
arithmetic
bit manipulation
comparing
converting
converting-arrays
enumerating
mathematical functions
printing
printing-numerative
® private

digitRshift:bytes:lookfirst:
digitSubtract:

@ digitSum

® cven

factor

floor
gcd:
growby:
growto:

® hex
@ highBit

@ hichBitOfMagnitude

Implementors Senders

n".'i ﬁ _=ﬂ

¢ Math-Operations-Extensions B extension Il F +L w

-

(¢ Pharo Virtual Machine! { chaufke\Documents\Pharct\images\Pharo 8.0 - 32bit (development version, latest)\Pharo 8.0 - 32bit (development version, latest).image)

- Pharo Tools System Debugging Windows Help
Playground N &+ Integer==factorial
EJ JenkinsTools-ExtraReports Character instance side =, Il digitRshift:bytes:lookfirst:
Fage]
1 Jobs DateAndTime B extensions digitSubtract:
EJ Jobs-Tests Duration accessing @ digit5um
EJ Kernel Number arithmetic ® cven
EJ Kernel-BytecodeEncoders Float bit manipulation factorial
Es Kernel-Chronology-Extras BoxedFloat6d comparing floor
e L : ged:
Be VERY careful fooling around in here! B
growto:
* You can change the behavior of built-in Smalltalk methods. RS
X
* Pharo itself is executing these methods live. ®higheit
highBitOfMagnitude

* You can corrupt your Pharo image itself if you modify them. ERSEEEEEISSREEEtEs

" _ " % -
TranSf_rlpt L =T - nveEen [L= IS -1 IR @UWS 1S L -ﬁ mE E,
‘ factorial
=0 ifTrue: [* 1]
> 0 ifTrue: [* - 1) factorial].
error:
1/6[1] # Math-Operations-Extensions ™ extension I F +L w

gz AUw Tegipt) (2 btegdibrfagtorial

8.0 - 32bit (development version, latest).image)

Magnitude

=] Jobs-Tests

Integer==factorial

instance side &l
B extensions

digitAt:base:
digitCompare:

accessing digitDiv:neg:
EJ Kemel [Browse cirl+B arithmetic digitl ength
EJ Kernel-BytecodeEncoder: growce critiques bit manipulation digitLogiczop:length:
Es Kernel-Chronology-Extras Browse dependencies comparing digitLshift:
EJ Kernel-Rules Find class Floahd converting digitMultiply:neg:
EJ Kernel-Tests Rename Ctrl+R ‘log converting-arrays digitRshift:bytes:lookfirst:
EJ Kernel-Tests-Extended BERIETEEGETSS enumerating digitSubtract:
EJ Kernel-Tests-Rules New tag Decimal mathematical functions @ digitSum
<ernel-Tests-WithCompile Setup scope printing ® even
NG Lz Com e printing-numerative factorial
. e Cri+X | ® private floor
All Packages ScopedVie Extra ¥ nst.side Classside | ® Methods Vars | Class refs. Implementors Senders
. . . @ Integer {& factorial Inst. side method 51 &% £ -
Right-click in class category
. «“ ”
list, select “New package
ifTrue: [* 1].
> B ifTrue: [*

error:

1/6[1]

5] FigyzAUwx I Tloesip (52 btegd&-Ragtorial

- 1) factorial].

¢ Math-Operations-Extensions B extension Il F +L w

(¢ Phare Virtual Machine aufkehD L . it [ion, latest)h o d. (i ion, latest).image)

Pharo Tools System Debugging Windows Help

Playground I - Integer>>factorial
Page - : I E3 JenkinsTools-ExtraReports Magnitude instance side & Il digitAt:base:
1 Jobs Character B extensions digitCompare:
EJ Jobs-Tests DateAndTime accessing digitDiv:neg:
EJ Kernel Duration arithmetic digitLength

EJ Kernel-BytecodeEncoders Number bit manipulation digitLogiczop:length:
3 paring digitLshift:

Create a new package
verting digitMultiply:neg;

. Name of the new package: verting-arrays digitRshift:bytes:lookfirst:
merating digitSubtract:

|CCF’55[}6| ‘ hematical functions @ digitSum

ting ® cven

OK Cancel Bting-numerative factorial

rate floor
AllPackages ScopedView | ® Flat Hier. | ® Inst.side Classside | ® Methods Vars | Class refs. Implementaors Senders
. ? g 1 i o E -+ ="
Transcript Comment @ Integer i factorial Inst. side method 51 &% g,
‘ factorial
=08 ifTrue: [* 1].
> 0 ifTrue: [* - 1) factorial].
error: 'Not wvalid fc egative integers
1/6[1] # Math-Operations-Extensions ™ extension I F +L w
5] FigyzAUwx I Tloesip (52 btegd&-Ragtorial

CCPS506
1 BaselineOfTonel
E1 BaselineOfTraits
1 BaselineOful
1 BaselineOfUnifiedFFI
EJ Bluelnk-Core
1 Bluelnk-Extras
EJ Bluelnk-Tests
Select your new package [cCPs506
Calypso-Browser
alypso-NavigationModel
_alypso-NavigationModel-Tests

“alvnzn-SustemPlioine-ClassSenr

All Packages Scoped View | Inst. side Class side

* Under “New class” is a class template

* Give your subclass a catchy name Object subclass:

e Ctrl-St instanceVariableNames:
ri-5 10 Save classVariableNames:

package:

© Alex Ufkes, 2020, 2022

E1 BaselineOfTonel

E1 BaselineOfTraits

[E1 BaselineOful

EJ BaselineOfunifiedFFI

EJ Bluelnk-Core

EJ Bluelnk-Extras

EJ Bluelnk-Tests

£ CCPS506

E3 calypso-Browser

E3 calypso-NavigationModel

3 calypso-NavigationModel-Tests

hI'_.-‘||'.."‘|'~'..|'|-'R_'.|'Q-1'Fll'r‘||:'|lIl.'-'il‘lt.-f_|AiQ';.r"ir - We Can add instance Or Class methOdS/Va riables

AllPackages ScopedView | ® Flat Hier. Inst.side Classside | ® Methods Vars Class refs.

Comment (Labl Inst. side method

Object subclass: #L
instanceVariableNames:
classVariableNames:
package: 5

W slots

Class not referenced X
A No class comment X

(¢ Phare Virtual Machine aufkehD L . it [g 1 o d. (i ion, latest).image)

Capctome

Pharo Tools dows Help

&+ Labl

il 1 BaselineOfTonel @ Labl instance side '
B BaselineOfTraits
EJ BaselineOful
B BaselineOfunifiedFFI
EJ Bluelnk-Core
B3 Bluelnk-Extras
B Bluelnk-Tests
£z CCPs506
E3 Calypso-Browser
E3 Calypso-NavigationModel
EJ calypso-MavigationModel-Tests

B ralunsn-SustemPligine-rlascSerir

Pz

AllPackages ScopedView | ® Flat Hier. | ® Inst.side Classside | ® Methods Vars | Class refs.
Transcript Comment 3 Labl Inst. side method =
‘ messageSelectorAndArgumentNames
temporary variable names
1/6[1] ¢ M extension I F +L w
FEyz A Tesip?2 (I2Gb1

1 Calypso-NavigationModel
[E] Calypso-NavigationModel-Tests

B rahmon-SustemPlugine-rlassSerir

All Packages ScopedView | ® Flat Hier. | ® Inst.side Classside | ® Methods Vars | Class refs. Implem
Comment G Labl =] firstMessage: Inst. side method

firstMessage: num Keyword message, one argument

sum One temporary variable

SUm = num + 5.

sum. ~ used to return object

cus o2

1/10[1] ¢ accessing M e

© Alex Ufkes, 2020, 2022

a] 8]

2 Pharo Virtual Machine! (C:\Users\aufke\Documents\Pharc\images\Pharo 8.0 - 32bit (development version, latest)\Pharo 8.0 - 32bit (development version, latest).in
Pharo Tools System Debugging Windows Help

Playeround " L e 3 Labl=>=firstMessa

= * \We didn’t implement a new method ’;‘lt; gtf:imm :
— ¥l d

Bl * Labl inherits it from Object |

1= caseunewiunified FF

EJ Bluelnk-Core

EJ Bluelnk-Extras

EJ Bluelnk-Tests

E= CCP5506

EJ Calypso-Browser

1 Calypso-NavigationModel

E3 Calypso-NavigationModel-Tests

B ralunsn-SvetemPlugine-rlaccSerir

Labl new.

W
Il

Transcript clear.
Transcript show: (a firstMessage: 7); cr.

AllPackages ScopedView | ® Flat Hier. | ® Inst.side Classside |
Transcript Comment O Labl (] firstMessage: Inst
12 firstMessage: num
Sum

SUm := num + 5.

© Alex Ufkes, 20

SLIM .

Summary

© Alex Ufkes, 2020, 2022

Imperative programming paradigm
Object Oriented Programming
Smalltalk:

o Message Passing

o Objects, literals

o Arithmetic

Classes and methods in Pharo

119

Next week...

Blocks &
more

(The fun stuff!)

© Alex Ufkes, 2020, 2022 120

© Alex Ufkes, 2020, 2022 121

