
C/CPS 506
Comparative Programming Languages

Prof. Alex Ufkes

Topic 1: Imperative paradigm, Smalltalk basics

© Alex Ufkes, 2020, 2022 2

Notice!

Obligatory copyright notice in the age of digital
delivery and online classrooms:

The copyright to this original work is held by Alex Ufkes. Students
registered in course C/CPS 506 can use this material for the purposes
of this course but no other use is permitted, and there can be no sale
or transfer or use of the work for any other purpose without explicit
permission of Alex Ufkes.

3

Instructor

Alex Ufkes

aufkes@ryerson.ca

Lecture time (CCPS):

Saturday: 9:00am-12:00pm

Lab time (CCPS):

Saturday: 12:00-1:00pm

© Alex Ufkes, 2020, 2022

4

When Contacting…

• E-mail – I check it often (aufkes@ryerson.ca)
• Please DO NOT email me at aufkes@scs.ryerson.ca

o I don’t check this one at all.
• Please put CCPS506 in the subject line
• Include your full name, use your Ryerson account

© Alex Ufkes, 2020, 2022

• Announcements related to this course will be made
on D2L. Be sure to check regularly!

• Grades, assignments, and labs will be posted to D2L.
• The course outline can also be found there.

5

Course Administration

© Alex Ufkes, 2020, 2022

• Study fundamental concepts in the design of programming languages.

• Explore through four languages: Smalltalk, Elixir, Haskell, and Rust.

6

Course Synopsis

Each of these differs in a number of significant language characteristics:

Type systems: static VS dynamic, strong VS weak typing

Paradigm: object oriented, functional, and imperative

Syntax and semantics: scoping rules, data types, control structures,
subprograms, encapsulation, concurrency, and exception handling.

© Alex Ufkes, 2020, 2022

No official text for this course.
Save your money!

Lecture slides will be posted
every week.

7

Course Text

Online resources for each
language will also be provided.

© Alex Ufkes, 2020, 2022

8

Evaluation (CCPS)

Labs: 20% Two labs per language, 2.5% each
Projects: 40% One per language, complete 2 of 4
Final Exam: 40% Released after final lecture

All evaluation details and deadlines can be
found in the course outline.

© Alex Ufkes, 2020, 2022

9

Regarding Deadlines

From the outline:

Late Submissions

Late submissions will be penalized at a rate of 3n %, where n is the
number of days late. One day late is a 3% penalty, two days 9%, three
days 27%, four days 81%. Five days or later receives zero.

• The penalty for a couple days late is small, but it ramps up quickly.

© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 10

Questions So Far?

• Imperative programming paradigm
• Object Oriented Programming
• The Smalltalk programming language

11

Today

© Alex Ufkes, 2020, 2022

12

Imperative Language Paradigm

© Alex Ufkes, 2020, 2022

This is what you’re familiar with, assuming you’ve taken C/CPS 109/209

Imperative programming
uses statements to change

a program’s state:
Statements?

Imperative Language Paradigm

13© Alex Ufkes, 2020, 2022

Programs store
data in variables

Variables represent locations
in the computer’s memory

The contents of memory in use by a program, at any given time during
its execution, is called the program’s state.

Program State

14© Alex Ufkes, 2020, 2022

Fundamentally, everything is done by changing values of variables

Statements can cause a
program to change state:

State 1)

x y

State 2)

State 3)

0 0

7 0

7 14

15© Alex Ufkes, 2020, 2022

State variables:
• Channel
• Volume

• We must know the current state of the TV, or “Volume Up”
and “Channel Down” can’t be properly defined.

• Thus, current volume and channel are part of the TV’s state.

Everyday Example?

16© Alex Ufkes, 2020, 2022

• If you’ve ever played a console emulator with a “save state”
option, this is how they work.

• A save state is simply a memory dump of the console’s RAM.

17

Emulator Save States

© Alex Ufkes, 2020, 2022

Recipes, checklists, IKEA instructions, etc. are all familiar concepts.

These things are not computer programs but are similar
in style to imperative programming.

Understanding imperative programming is thus less of
a conceptual leap for the novice programmer.

Why Imperative?

18© Alex Ufkes, 2020, 2022

(Before switching to Python) Ryerson taught multiple versions of CPS109:
• Objects first (for people with programming experience)
• Objects later (for people new to programming)

Focuses on imperative paradigm
before introducing OOP abstraction

Begins straight away with OOP
principles, objects and classes.

Evidence?

19© Alex Ufkes, 2020, 2022

Machine code is imperative, and nearly all computer
hardware is designed to execute machine code.

From this low-level perspective, “state”
can be described in terms of memory
locations and machine instructions.

From a high-level language perspective,
state is described in terms of variables

and more complex statements

In either case, the paradigm is the same.

Why Imperative?

20© Alex Ufkes, 2020, 2022

In other words, we would want a good reason to seek
an alternative to imperative programming.

21© Alex Ufkes, 2020, 2022

• Fine for small programs, easy to keep track of a small number of variables.
• Difficult to scale up, both in terms of code size and parallelism.
• It gets very hard to model a program’s state in one’s head. This leads to

convoluted debugging techniques:

Imperative Drawbacks?

C still dominates in embedded systems

22© Alex Ufkes, 2020, 2022

State changes are localized (partially or entirely) to procedures
(functions/subroutines).

Makes imperative programs far more readable, simplifies coding,
and allows for code reuse between programmers.

In C, instead of having 1000 lines of code in our main() function, we
keep main() as short as possible and add user-defined functions.

Procedural Programming

23© Alex Ufkes, 2020, 2022

Example:
• C doesn’t have native support

for matrix operations.
• Write our own functions rather

than duplicating code in main()

24© Alex Ufkes, 2020, 2022

“Makes imperative programs far more readable, simplifies
coding, and allow for code reuse between programmers.”

If procedures are well written, it is often possible to discern what a
procedure does based solely on the name and parameter list.

25© Alex Ufkes, 2020, 2022

Imperative paradigm uses statements to change a program’s state.
• The programmer specifies an explicit sequence of steps for the

program to follow.

Adding procedures/functions/subroutines can improve scalability.
• Code can be made more readable, less duplication, easier to reuse.
• Principle of modularity – separate program functionality into

independent, interchangeable modules.

In Summary

26© Alex Ufkes, 2020, 2022

Object Oriented Programming:
• “Pure” OO languages treat even

primitives and operators as objects
• Java/C++ and others support OOP

to greater or lesser degrees.

Functional Programming:
• Avoid changing state, avoid

mutable data
• Declarative rather than imperative
• Tell the program where to go, not

how to get there.

Two widely used paradigms:

Alternatives?

27© Alex Ufkes, 2020, 2022

Going forward, always remember:

The line between different paradigms is grey.

Paradigms classify languages based on their features

Any given language can possess features from multiple
paradigms and thus belong to all.

C is considered a very imperative language, but it
supports first class functions using function pointers.

28© Alex Ufkes, 2020, 2022

29© Alex Ufkes, 2020, 2022

Object Oriented Paradigm

In Java, behaviors are implemented as methods, C++ as member functions. Same idea.

An object’s procedures can access and modify the data fields of that object.

Broadly speaking, a software construct that implements both state and behavior.

In the OOP paradigm, programs are built up of objects that communicate
with each other.

Objects?

We can also say that objects have identity. Unique instances of the same
class can exist simultaneously.

30© Alex Ufkes, 2020, 2022

Broadly speaking, a software construct that implements both state and behavior.

• These are primitives.
• They have a state, but

no associated behavior.
• No associated methods.

Objects

31© Alex Ufkes, 2020, 2022

Broadly speaking, a software construct that implements both state and behavior.

• These are Objects.
• They have both a state,

and associated behaviors.
• Behaviors implemented

via class methods.

Objects

32© Alex Ufkes, 2020, 2022

• Objects are instances of classes
• The class is the cookie cutter, the object is the cookie.

Class definition
Object instances

Class-Based OOP

33© Alex Ufkes, 2020, 2022

• Objects are instances of classes
• The class is the cookie cutter, the object is the cookie.
• OOP languages typically support notions of inheritance.

• Integer inherits from Number
• Number inherits from Object.

Class-Based OOP

34© Alex Ufkes, 2020, 2022

OOP languages are still largely imperative.
• Class methods can implement behaviors, providing abstraction.

Programs are built up of objects that communicate with each other.
• Objects combine attributes (data, variables) and procedures

(functions, methods).
• Most common are class-based OOP languages (C++, Java). Objects

are instances of classes.
• Ideas like inheritance provide code reusability.

OOP: In Summary

35© Alex Ufkes, 2020, 2022

“Object-oriented programming is an
exceptionally bad idea which could only
have originated in California.”

“Object oriented programs are offered
as alternatives to correct ones…”

- Edsger Dijkstra

36© Alex Ufkes, 2020, 2022

Object Oriented Programming

Smalltalk: OOP cranked up to 11

37© Alex Ufkes, 2020, 2022

• The externally visible representation of a program
• Based on sequence of characters (text-based languages)
• Easily understood in the context of a syntax error:

• This Java code is syntactically correct.
• We know this because it compiles.
• The sequence of characters that

comprise the source code make sense
in the context of the Java language.

Syntax VS Semantics

38© Alex Ufkes, 2020, 2022

• This Java code contains syntax
errors. It does not compile.

• The sequence of characters that
comprise this source code does
NOT make sense!

• The externally visible representation of a program
• Based on sequence of characters (text-based languages)
• Easily understood in the context of a syntax error:

39© Alex Ufkes, 2020, 2022

Syntax VS Semantics

Simplicity - How much to learn:
• Size of grammar. How “much” syntax is there?
• Complexity of navigating modules or classes
• Complexity of type system (how many types?)

Orthogonality - How hard to learn, how do features interact:
• How many ways can we combine grammar elements
• Type system overall (static, dynamic)

Extensibility:
• Do mechanisms exist to extend the language?
• Functionally, syntactically, defining literals, overloading, etc.

40© Alex Ufkes, 2020, 2022

• If syntax is the form, semantics is the meaning. What does the code do?
• Can be understood by showing relationship between input and output
• Code can be syntactically correct but have an unclear meaning.

• This code is syntactically correct.
• Semantically, it is somewhat

confusing.

41© Alex Ufkes, 2020, 2022

Syntax VS Semantics

• This code is syntactically correct.
• Semantically, it is confusing.
• Semantically, It is the same as:

• An understanding of a language’s
semantics allows us to look at 1), and
understand it as being the same as 2)

• Leads to more efficient machine code.

1)

2)

“A compiler will complain about syntax, your coworkers will complain about semantics”

42© Alex Ufkes, 2020, 2022

• What can a particular language construct be used for.
• Consider the humble assignment operator (=):

1. Initialize variables with constants
2. Initialize variable with result of

sum of two other variables.
3. Store sum of two variables in a

variable

However! The assignment
operator can’t typically be used
to clone arrays/objects.

Pragmatics

43© Alex Ufkes, 2020, 2022

• A particular set of pragmatics that makes a program executable
• Multiple unique implementations can solve the same problem

These implementations are slightly different but solve the same
problem of summing three numbers and printing the result

Implementation

44© Alex Ufkes, 2020, 2022

Syntax – Language form:
• Simplicity, how much to learn
• Orthogonality, how hard to learn, how do features interact
• Extensibility, can the language be extended by the programmer

Semantics – Language meaning:
• What does a block of code actually do/mean

Pragmatics:
• What can a particular language construct be used for.

Implementation:
• A particular set of pragmatics that makes a program executable.

Programming Language Characteristics

45© Alex Ufkes, 2020, 2022

46© Alex Ufkes, 2020, 2022

47

Alan Kay

Coined the term Object Oriented Programming
in grad school, 1966/67

Big idea:
• Use encapsulated “mini computers” in software
• Communicate via message passing, rather than

direct data sharing
• Each mini computer has its own isolated state
• Inspired by biology, cellular communication.
• Avoid breaking down programs into separate

data structures and procedures.

© Alex Ufkes, 2020, 2022

48

Alan Kay

In pursuit of this idea:
• Developed Smalltalk along with Dan Ingalls,

Adele Goldberg, and others at Xerox PARC.
• Originally, Smalltalk did not feature sub-classing.
• Kay considers sub-classing a distraction from

OOP’s true benefits: message passing.

© Alex Ufkes, 2020, 2022

49

Alan Kay

“I’m sorry that I long ago coined the term “objects”
for this topic because it gets many people to focus
on the lesser idea. The big idea is messaging.”

“OOP to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things..”

© Alex Ufkes, 2020, 2022

50

Alan Kay

According to Kay, the essential
ingredients of OOP are:

1. Message passing
2. Encapsulation
3. Dynamic binding

Conspicuously missing from this list?
Inheritance, sub-class polymorphism

© Alex Ufkes, 2020, 2022

51

Alan Kay

“Java is the most distressing thing to happen
to computing since MS-DOS.”

“I made up the term ‘object-oriented’, and I
can tell you I didn’t have C++ in mind.”

© Alex Ufkes, 2020, 2022

History:
• “Smalltalk” typically refers to Smalltalk-80
• However, first version was Smalltalk-71
• Created in a few mornings of work by Kay on a bet

that it could be implemented in a “page of code”.
• Smalltalk-72 was more full-featured, used for

research at Xerox PARC
• Smalltalk-76 saw performance-enhancing revisions
• Smalltalk-80 V1 was given to select companies for

peer review
• Smalltalk-80 V2 was released to the public in 1983.

52

Smalltalk

© Alex Ufkes, 2020, 2022

Smalltalk is the prototypical class-based, object-oriented language.

Overview

53

• Its syntax is very minimal – famously fits on a postcard
• Objects (and message passing!) are central – Unlike Java

and C++, there are no primitives. Everything is an object.
• Pure object-oriented.

There are no primitives: No int x, double y, etc.

Control structures are methods:
• No if/else/while/for syntax constructs.
• Control flow implemented via blocks and message passing.

© Alex Ufkes, 2020, 2022

• Everything is an object. Everything is an instance of a corresponding class.
Recall cookie/cookie cutter analogy.

• Class-based. Every object has a class that defines the structure of that object
• Classes (the cookie cutter!) themselves are also objects.

o Each class is an instance of the metaclass of that object.
o Each metaclass is an instance of a class called Metaclass

Your brain right now:

Pure Object-Oriented

54© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 55

Class Hierarchy

You’ve seen Java’s:

© Alex Ufkes, 2020, 2022 56

Object

Java
Collections:

© Alex Ufkes, 2020, 2022 57

Java Swing
Components:

© Alex Ufkes, 2020, 2022 58

Class Hierarchy

In Smalltalk?

• Classes (the cookie cutter!) themselves are also objects.
o Each class is instance of the metaclass of that object.
o Each metaclass is an instance of a class called Metaclass

59© Alex Ufkes, 2020, 2022

Everything is an object. Everything is an instance of a corresponding class.

A Smalltalk object can do exactly three things:
1. Hold state (assignment)
2. Receive a message (from itself or another object)
3. Send message (to itself or another object)

Message passing is central in Smalltalk. Understand message passing,
understand Smalltalk.

Objects in Smalltalk

60© Alex Ufkes, 2020, 2022

When an object receives a message:
• Search the object’s class for an appropriate

method to deal with the message.
• Not found? check superclass (inheritance!)
• Repeat until method is found, or we hit

class “Object”. Much like Java.
• Still not found? Throw exception.

Message Passing

Passing a message to an object is semantically equivalent to
invoking one of its methods:

61© Alex Ufkes, 2020, 2022

Message Passing

Message passing drives all computation in Smalltalk.

For every snippet of Smalltalk code we see, look at it in terms of message passing.

What messages are being sent? What objects are they being sent to?

Understand message passing, understand Smalltalk.

“I’m sorry that I long ago coined the term “objects” for this topic because it gets
many people to focus on the lesser idea. The big idea is messaging.”

- Alan Kay

62© Alex Ufkes, 2020, 2022

63© Alex Ufkes, 2020, 2022

• Pharo is a GUI-based programming environment for the Smalltalk language.
• Smalltalk is based on a virtual machine, similar to Java, which interprets

bytecode and makes it platform independent.
• One of the unique features of Smalltalk is that all development and changes

are done in the Smalltalk environment itself.
• All classes (including their code) and objects (including their state) are stored

inside an image that encapsulates the complete state of the system.
• When you save the image, close the VM, and then re-open it again, perhaps

on another machine, everything will be exactly as you left it.

64© Alex Ufkes, 2020, 2022

There are many different Smalltalk
implementations.

When/if Googling for help, it’s useful to
specify the specific implementation

(Pharo for this course).

Each may have subtle differences in
their syntax and major differences in

their class organization.

65© Alex Ufkes, 2020, 2022

Pharo: Smalltalk IDE

66© Alex Ufkes, 2020, 2022

Pharo Launcher:
• Pick most recent stable distribution
• Don’t use the development version,

unless you enjoy bugs and pain.
• I recommend Pharo 8.0, 64bit

67

Nifty Pharo Reference:

http://squeak.org/documentation/terse_guide/

http://files.pharo.org/media/pharoCheatSheet.pdf

Nifty Squeak Reference:

• Squeak is a different Smalltalk implementation.
• Most of the syntax is the same, and this terse guide is very

conveniently laid out as a reference to use while coding.
• (Pharo is a commercial derivative of Squeak)

© Alex Ufkes, 2020, 2022

68© Alex Ufkes, 2020, 2022

Playground window:
Smalltalk code goes here

Transcript window:
Output is printed here

Class browser:
• Here we can browse the entire

Smalltalk class hierarchy
• We can also add and edit our

own custom classes here

Class implementation can be
viewed and modified here

69© Alex Ufkes, 2020, 2022

Pharo: Smalltalk IDE

We’ll typically keep the class browser
collapsed for our in-class examples

70© Alex Ufkes, 2020, 2022

Hello, World!

• We are passing the show: message to the Transcript object.
• This message includes one argument, a string literal ‘Hello, World!’

71© Alex Ufkes, 2020, 2022

Transcript show:

72© Alex Ufkes, 2020, 2022

73© Alex Ufkes, 2020, 2022

x := 16 sqrt.

The message sqrt is
sent to the object 16

Think of every Smalltalk statement in terms of message passing:

Only 3 operations:
• Assignment
• Send message
• Receive message

In Java, we’d say: x = Math.sqrt(16);

Messages: Unary

74© Alex Ufkes, 2020, 2022

x := 16 sqrt.

The message sqrt is
sent to the object 16

Think of every Smalltalk statement in terms of message passing:

Only 3 operations:
• Assignment
• Send message
• Receive message

• 16 is an instance of the SmallInteger class.
• SmallInteger handles the message (if it knows how)
• Returns the result of the square root (in this case 4)

o 4 is an object!

Messages: Unary

75© Alex Ufkes, 2020, 2022

x := 16 sqrt.

Think of every Smalltalk statement in terms of message passing:

Only 3 operations:
• Assignment
• Send message
• Receive message

Messages: Unary

Result assigned to x

• 16 is an instance of the SmallInteger class.
• SmallInteger handles the message (if it knows how)
• Returns the result of the square root (in this case 4)
• x now references the result – a SmallInteger object, 4

76© Alex Ufkes, 2020, 2022

x := 16 sqrt.

Think of every Smalltalk statement in terms of message passing:

Messages: Unary

77

Unary messages are passed without arguments

Unary Messages:
sqrt, squared, asInteger
class, cr, floor, ceiling

sin, cos, tan
Any message without argument(s)

© Alex Ufkes, 2020, 2022

Think of every Smalltalk statement in terms of message passing:

Messages in Smalltalk

78© Alex Ufkes, 2020, 2022

• Semi-colon allows us to cascade multiple
messages to an object (Transcript here)

• cr is the code for carriage return (newline)

Dot separates Smalltalk statements

x := 3 + 4
The message + is passed to

object 3 with the argument 4

Binary messages are strictly between two objects.
Symbolic operators are binary messages.

Messages: Binary

79

Binary Messages:
+, -, *, /, //, \\
=, ==, <, <=, >, >=

Arithmetic, comparison, etc.

© Alex Ufkes, 2020, 2022

x := 2 raisedTo: 4.

• 2 is the receiving object
• raisedTo: is the message
• 4 is the argument
• This is called a “keyword” message

Messages: Keyword

80

Keyword messages can contain any number of arguments.

Keyword messages include a colon. Quick and easy way to differentiate.

© Alex Ufkes, 2020, 2022

x := ‘Hello’ indexOf: $o startingAt: 2.

• The actual message is indexOf:startingAt:
• Smalltalk interleaves arguments.
• Meant to improve readability.

Multiple Arguments

81© Alex Ufkes, 2020, 2022

Semantically identical Java syntax is as follows:

x = “Hello”.indexOf(‘o’, 2);

Don’t be confused!

x := ‘Hello’ indexOf: $o startingAt: 2.

Multiple Arguments: Interleaving

82

Argument interleaving has other implications that we’ll explore later.

© Alex Ufkes, 2020, 2022

83© Alex Ufkes, 2020, 2022

Unary Messages:
sqrt, squared

asInteger
class, cr

floor, ceiling
sin, cos, tan

Any message without
argument(s)

Binary Messages:
+, -, *, /

//, \\
=, ==,

<, <=, >, >=

Arithmetic,
comparison, etc.

Keyword Messages:
raisedTo:

bitAnd:, bitOr:
show:

ifTrue:ifFalse:

Message with one or
more arguments,
ending in colon:

http://squeak.org/documentation/terse_guide/

Message Summary

84© Alex Ufkes, 2020, 2022

In Smalltalk, you can send any message to any object. If the object doesn’t
know what to do with the message, a run-time error occurs.

Send message blahblah to
SmallInteger object 3.

85© Alex Ufkes, 2020, 2022

Smalltalk Literals

86

Numbers: 42, -42, 123.45, 1.2345e2, 2r10010010, 16rA000
Characters: Denoted by a $ - $A, $8, $?
Strings: Denoted with single quotes: ‘Hello, World!’
Comments: Double quotes - “This is a Smalltalk comment”

© Alex Ufkes, 2020, 2022

• Must be declared before use.
• Variables are references to objects.
• Most common are instance and temporary variables.
• Temporary variables declared inside vertical bars: | x y |

Arithmetic!
• Symbolic operators mean what we’d expect.
• Plus is addition, asterisk is multiplication, etc.
• Assignment is done using :=

Temporary variables
declared at the top!

87© Alex Ufkes, 2020, 2022

Array of literals (static):
• #(1 2 3 4 5) Array of integers, numbers separated by spaces
• #(1 2.0 ‘Hello’ #(‘World’))
• Arrays in Smalltalk can contain any object. Heterogeneous.

#(Arrays)

88© Alex Ufkes, 2020, 2022

Array of variables (dynamic):
• #{a . b . c . d . e} Array of variables
• Defined with curly braces, periods between elements.

• Smalltalk knows how to print an entire array
• What about accessing individual elements?

#{Arrays}

89© Alex Ufkes, 2020, 2022

• Use at: message with single argument indicated index
• Based on what is printed, we see that indexing in Smalltalk starts at 1!
• We need parentheses – Otherwise Pharo will read the message as

show:at: instead of show: and at: as separate messages

Accessing Array Elements

Brackets here are simply
enforcing precedence

90© Alex Ufkes, 2020, 2022

• We need parentheses – Otherwise Pharo will read the message as
show:at: instead of show: followed by at:

• Send at: message to a with argument 3, that result becomes the
argument of the show: message, sent to Transcript.

Accessing Array Elements

Brackets here are simply
enforcing precedence

91© Alex Ufkes, 2020, 2022

• #‘aSymbol’ same as #aSymbol (quotes implied)
• #‘symbol one’ #‘symbol two’
• Symbol objects are globally unique. Strings are not.

Meaning:
• Two identical strings can exist as two separate objects
• For every unique symbol value, there can be only one object.

#Symbols

92

followed by a string literal

© Alex Ufkes, 2020, 2022

Let’s prove it!

• Variables a and b might reference different objects, despite
the fact that the string literals are exactly the same.

• Variables x and y reference the same object. There can be
no two equal symbols which are different objects.

93© Alex Ufkes, 2020, 2022

• Declare two identical strings, but in different
ways to ensure we get different objects.

• Compare strings. ‘=‘ checks for same value,
‘==‘ checks if they are the same object.

Same value, different object!

94© Alex Ufkes, 2020, 2022

• Symbol concatenation returns a string
• Pass the asSymbol message to a string

to convert it to a symbol.

Same value, same object!

95© Alex Ufkes, 2020, 2022

Checking for equal string value involves comparing individual characters.
This can be costly if the strings are long. Linear time operation.

Checking if two variables reference the same object is fast – single
integer comparison between addresses.

With symbols, if they reference different objects, they have different
values. The same cannot be said of strings.

Symbols: What’s the point?

96© Alex Ufkes, 2020, 2022

Given that message passing is central in Smalltalk,
we would expect to be doing a lot of it.

Symbols: What’s the point?

97

When a message is sent to an object:
• Search the object’s class for an appropriate method

o (Method whose name matches message.)

Symbols make each check constant time as opposed
to linear time. Very valuable!

Messages are symbols!

© Alex Ufkes, 2020, 2022

In Smalltalk, you can send any message to any object. If the object doesn’t
know what to do with the message, a run-time error occurs.

Send message blahblah to
SmallInteger object 3.

Symbol!

98© Alex Ufkes, 2020, 2022

Summary: Literals

99© Alex Ufkes, 2020, 2022

Arithmetic Expressions

100© Alex Ufkes, 2020, 2022

VS.
Arithmetic is largely the same in every language. Math is math.

• So far, this is typical
• Notice integer operations

produce integer results

101© Alex Ufkes, 2020, 2022

Division is a coin toss. Truncate? Convert to float?

When we force the result to be integer, it truncates

Smalltalk has a
fraction type!

Division

102© Alex Ufkes, 2020, 2022

Operator Precedence in

103© Alex Ufkes, 2020, 2022

• Three levels! Unary -> Binary -> Keyword
• After that, ordering goes from left to right
• Brackets must be used to specify ordering outside of this.

+ and * are both binary messages

Operator/Message Precedence in

104© Alex Ufkes, 2020, 2022

// Integer division
\\ Integer remainder
sqrt Square root
raisedTo: Exponentiation

New or Differing Operators

105© Alex Ufkes, 2020, 2022

http://squeak.org/documentation/terse_guide/

106© Alex Ufkes, 2020, 2022

3 factorial + 4 factorial between: 10 and: 100

Which messages are unary? Binary? Keyword?

1. factorial gets sent
to 3, then 4.

6 + 24 between: 10 and: 100

2. + is sent to 6 with
24 as argument

30 between: 10 and: 100

3. between:and: sent to 30 with
10 and 100 as arguments

true

Example: What is the Result?

107© Alex Ufkes, 2020, 2022

108© Alex Ufkes, 2020, 2022

Classes

109© Alex Ufkes, 2020, 2022

• We can see everything in the System Browser.
• All classes, all methods, everything.
• Here is the factorial method defined in the Integer class.

It’s recursive!

110© Alex Ufkes, 2020, 2022

Be VERY careful fooling around in here!
• You can change the behavior of built-in Smalltalk methods.
• Pharo itself is executing these methods live.
• You can corrupt your Pharo image itself if you modify them.

111© Alex Ufkes, 2020, 2022

Right-click in class category
list, select “New package”

112© Alex Ufkes, 2020, 2022

113© Alex Ufkes, 2020, 2022

Select your new package

• Under “New class” is a class template
• Give your subclass a catchy name
• Ctrl-S to save

114© Alex Ufkes, 2020, 2022

We can add instance or class methods/variables

115© Alex Ufkes, 2020, 2022

116© Alex Ufkes, 2020, 2022

Keyword message, one argument

One temporary variable

^ used to return object

117© Alex Ufkes, 2020, 2022

• We didn’t implement a new method
• Lab1 inherits it from Object

118© Alex Ufkes, 2020, 2022

• Imperative programming paradigm
• Object Oriented Programming
• Smalltalk:

o Message Passing
o Objects, literals
o Arithmetic

• Classes and methods in Pharo

Summary

119© Alex Ufkes, 2020, 2022

Blocks &
more

(The fun stuff!)

Next week…

120© Alex Ufkes, 2020, 2022

© Alex Ufkes, 2020, 2022 121

