
CPS506 - Comparative Programming Languages
Introduction

Dave Mason - Alex Ufkes
Department of Computer Science
Ryerson University

©2022 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/


Who is Dave?

Dave Mason



Who is Alex?

Alex Ufkes



What is the Course?

https://cps506.cs.ryerson.ca

https://cps506.cs.ryerson.ca/
https://cps506.cs.ryerson.ca/
https://cps506.cs.ryerson.ca/


Responsibilities

Our responsibilities:
be fair, evaluate, uphold standards
curate
tell you what we know - in the best way we know how to do
try to inspire you

Your responsibilities:
learn!!
be fair, don’t cheat
oh, and did I mention learn - by listening, by interacting, by reading,
by coding



Radical Honesty

I wish you all would earn As
I’ll let you in on a secret, getting an A is not hard
- do assignments & labs, read reference material, attend class,
ask questions until you have an answer that you understand,
decide to treat the course as something valuable to you and have
fun
I believe you all can at least earn Bs
Based on past experience, I expect a dozen or so will fail the
course
I appreciate those of you who will take the advice above - helping
you learn is a joy
I resent those of you who will give a half-hearted effort, and blame
me for you not learning
I have some anxiety about the course, as there are always
problems with courses, and I don’t want you to have a negative
experience



Version Control

Efficiently maintain every step in the development process
Excellent for individual development
Essential for team development
Every successful commercial organization uses one (or more)
RCS, SCCS, CVS - older, non-distributed
Git, Mercurial, Fossil, Arch, Bazaar - distributed, open-source



Use Cases

lets you refactor and experiment freely
support branches for support/development
merge changes from others
binary search for regressions
some people commit daily
some people commit after every green test
works with Continuous Integration (Jenkins, Nix)



Git

very popular DVCS - GitHub, GitLab
designed to support Linux Kernel development - replace Bitkeeper
oriented to very large projects with thousands of contributors
many features to support that model of development
arcane features easy to misuse



Fossil

very convenient DVCS
designed to support SQLite development
many features to support smaller team development
simpler interface - avoid forks, maintain consistency
single binary on each platform - easy installation, self-hosting
includes web GUI, Wiki, bug tracker



Fossil for CPS506

upload SSH key - using submit-cps506

automatically creates a .fossil for you



You’ve seen the Imperative Paradigm

C (& assembler) are classic imperative
everything done by changing values of variables
fine for small programs
difficult to scale up - code size and parallelism
programmer must model state
- in their head!
two widely used paradigms to address these problems: OO and
functional



Definitions

Syntax - the externally visible representation of a program
Semantics - the meaning of a program
Pragmatics - non-functional characteristics of a program
(environment)
Implementation - a particular set of pragmatics to make a program
executable



Syntax

Simplicity - how much to learn
size of the grammar
complexity of navigating modules/classes
complexity of the type system

Orthogonality - how hard to learn, how do features interact
number of special syntax forms
number of special datatypes
type system

Extensibility - how can language align with problem
functional
syntactically
defining literals
overloading


	Introduction
	Version Control Systems
	Programming Paradigms
	Definitions
	Syntax


